Refactored a few examples to work with Emscripten.

This commit is contained in:
Branimir Karadžić
2015-08-21 20:08:03 -07:00
parent 0f076ad7cc
commit 8107522629
6 changed files with 738 additions and 631 deletions

View File

@@ -55,141 +55,165 @@ static const uint16_t s_cubeIndices[36] =
6, 3, 7,
};
int _main_(int /*_argc*/, char** /*_argv*/)
class Cubes : public entry::AppI
{
uint32_t width = 1280;
uint32_t height = 720;
uint32_t debug = BGFX_DEBUG_TEXT;
uint32_t reset = BGFX_RESET_VSYNC;
bgfx::init();
bgfx::reset(width, height, reset);
// Enable debug text.
bgfx::setDebug(debug);
// Set view 0 clear state.
bgfx::setViewClear(0
, BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH
, 0x303030ff
, 1.0f
, 0
);
// Create vertex stream declaration.
PosColorVertex::init();
// Create static vertex buffer.
bgfx::VertexBufferHandle vbh = bgfx::createVertexBuffer(
// Static data can be passed with bgfx::makeRef
bgfx::makeRef(s_cubeVertices, sizeof(s_cubeVertices) )
, PosColorVertex::ms_decl
);
// Create static index buffer.
bgfx::IndexBufferHandle ibh = bgfx::createIndexBuffer(
// Static data can be passed with bgfx::makeRef
bgfx::makeRef(s_cubeIndices, sizeof(s_cubeIndices) )
);
// Create program from shaders.
bgfx::ProgramHandle program = loadProgram("vs_cubes", "fs_cubes");
int64_t timeOffset = bx::getHPCounter();
while (!entry::processEvents(width, height, debug, reset) )
void init(int /*_argc*/, char** /*_argv*/) BX_OVERRIDE
{
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency() );
const double toMs = 1000.0/freq;
m_width = 1280;
m_height = 720;
m_debug = BGFX_DEBUG_TEXT;
m_reset = BGFX_RESET_VSYNC;
float time = (float)( (now-timeOffset)/double(bx::getHPFrequency() ) );
bgfx::init();
bgfx::reset(m_width, m_height, m_reset);
// Use debug font to print information about this example.
bgfx::dbgTextClear();
bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/01-cube");
bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Rendering simple static mesh.");
bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs);
// Enable debug text.
bgfx::setDebug(m_debug);
float at[3] = { 0.0f, 0.0f, 0.0f };
float eye[3] = { 0.0f, 0.0f, -35.0f };
// Set view 0 clear state.
bgfx::setViewClear(0
, BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH
, 0x303030ff
, 1.0f
, 0
);
// Set view and projection matrix for view 0.
const bgfx::HMD* hmd = bgfx::getHMD();
if (NULL != hmd && 0 != (hmd->flags & BGFX_HMD_RENDERING) )
{
float view[16];
bx::mtxQuatTranslationHMD(view, hmd->eye[0].rotation, eye);
// Create vertex stream declaration.
PosColorVertex::init();
float proj[16];
bx::mtxProj(proj, hmd->eye[0].fov, 0.1f, 100.0f);
// Create static vertex buffer.
m_vbh = bgfx::createVertexBuffer(
// Static data can be passed with bgfx::makeRef
bgfx::makeRef(s_cubeVertices, sizeof(s_cubeVertices) )
, PosColorVertex::ms_decl
);
bgfx::setViewTransform(0, view, proj);
// Create static index buffer.
m_ibh = bgfx::createIndexBuffer(
// Static data can be passed with bgfx::makeRef
bgfx::makeRef(s_cubeIndices, sizeof(s_cubeIndices) )
);
// Set view 0 default viewport.
//
// Use HMD's width/height since HMD's internal frame buffer size
// might be much larger than window size.
bgfx::setViewRect(0, 0, 0, hmd->width, hmd->height);
}
else
{
float view[16];
bx::mtxLookAt(view, eye, at);
// Create program from shaders.
m_program = loadProgram("vs_cubes", "fs_cubes");
float proj[16];
bx::mtxProj(proj, 60.0f, float(width)/float(height), 0.1f, 100.0f);
bgfx::setViewTransform(0, view, proj);
// Set view 0 default viewport.
bgfx::setViewRect(0, 0, 0, width, height);
}
// This dummy draw call is here to make sure that view 0 is cleared
// if no other draw calls are submitted to view 0.
bgfx::touch(0);
// Submit 11x11 cubes.
for (uint32_t yy = 0; yy < 11; ++yy)
{
for (uint32_t xx = 0; xx < 11; ++xx)
{
float mtx[16];
bx::mtxRotateXY(mtx, time + xx*0.21f, time + yy*0.37f);
mtx[12] = -15.0f + float(xx)*3.0f;
mtx[13] = -15.0f + float(yy)*3.0f;
mtx[14] = 0.0f;
// Set model matrix for rendering.
bgfx::setTransform(mtx);
// Set vertex and index buffer.
bgfx::setVertexBuffer(vbh);
bgfx::setIndexBuffer(ibh);
// Set render states.
bgfx::setState(BGFX_STATE_DEFAULT);
// Submit primitive for rendering to view 0.
bgfx::submit(0, program);
}
}
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
bgfx::frame();
m_timeOffset = bx::getHPCounter();
}
// Cleanup.
bgfx::destroyIndexBuffer(ibh);
bgfx::destroyVertexBuffer(vbh);
bgfx::destroyProgram(program);
virtual int shutdown() BX_OVERRIDE
{
// Cleanup.
bgfx::destroyIndexBuffer(m_ibh);
bgfx::destroyVertexBuffer(m_vbh);
bgfx::destroyProgram(m_program);
// Shutdown bgfx.
bgfx::shutdown();
// Shutdown bgfx.
bgfx::shutdown();
return 0;
}
return 0;
}
bool update() BX_OVERRIDE
{
if (!entry::processEvents(m_width, m_height, m_debug, m_reset) )
{
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency() );
const double toMs = 1000.0/freq;
float time = (float)( (now-m_timeOffset)/double(bx::getHPFrequency() ) );
// Use debug font to print information about this example.
bgfx::dbgTextClear();
bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/01-cube");
bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Rendering simple static mesh.");
bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs);
float at[3] = { 0.0f, 0.0f, 0.0f };
float eye[3] = { 0.0f, 0.0f, -35.0f };
// Set view and projection matrix for view 0.
const bgfx::HMD* hmd = bgfx::getHMD();
if (NULL != hmd && 0 != (hmd->flags & BGFX_HMD_RENDERING) )
{
float view[16];
bx::mtxQuatTranslationHMD(view, hmd->eye[0].rotation, eye);
float proj[16];
bx::mtxProj(proj, hmd->eye[0].fov, 0.1f, 100.0f);
bgfx::setViewTransform(0, view, proj);
// Set view 0 default viewport.
//
// Use HMD's width/height since HMD's internal frame buffer size
// might be much larger than window size.
bgfx::setViewRect(0, 0, 0, hmd->width, hmd->height);
}
else
{
float view[16];
bx::mtxLookAt(view, eye, at);
float proj[16];
bx::mtxProj(proj, 60.0f, float(m_width)/float(m_height), 0.1f, 100.0f);
bgfx::setViewTransform(0, view, proj);
// Set view 0 default viewport.
bgfx::setViewRect(0, 0, 0, m_width, m_height);
}
// This dummy draw call is here to make sure that view 0 is cleared
// if no other draw calls are submitted to view 0.
bgfx::touch(0);
// Submit 11x11 cubes.
for (uint32_t yy = 0; yy < 11; ++yy)
{
for (uint32_t xx = 0; xx < 11; ++xx)
{
float mtx[16];
bx::mtxRotateXY(mtx, time + xx*0.21f, time + yy*0.37f);
mtx[12] = -15.0f + float(xx)*3.0f;
mtx[13] = -15.0f + float(yy)*3.0f;
mtx[14] = 0.0f;
// Set model matrix for rendering.
bgfx::setTransform(mtx);
// Set vertex and index buffer.
bgfx::setVertexBuffer(m_vbh);
bgfx::setIndexBuffer(m_ibh);
// Set render states.
bgfx::setState(BGFX_STATE_DEFAULT);
// Submit primitive for rendering to view 0.
bgfx::submit(0, m_program);
}
}
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
bgfx::frame();
return true;
}
return false;
}
uint32_t m_width;
uint32_t m_height;
uint32_t m_debug;
uint32_t m_reset;
bgfx::VertexBufferHandle m_vbh;
bgfx::IndexBufferHandle m_ibh;
bgfx::ProgramHandle m_program;
int64_t m_timeOffset;
};
ENTRY_IMPLEMENT_MAIN(Cubes);

View File

@@ -460,291 +460,318 @@ uint32_t triangulate(uint8_t* _result, uint32_t _stride, const float* __restrict
return num;
}
int _main_(int /*_argc*/, char** /*_argv*/)
{
uint32_t width = 1280;
uint32_t height = 720;
uint32_t debug = BGFX_DEBUG_TEXT;
uint32_t reset = BGFX_RESET_VSYNC;
bgfx::init();
bgfx::reset(width, height, reset);
// Enable debug text.
bgfx::setDebug(debug);
// Set view 0 clear state.
bgfx::setViewClear(0
, BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH
, 0x303030ff
, 1.0f
, 0
);
// Create vertex stream declaration.
PosNormalColorVertex::init();
const bgfx::Memory* vs_metaballs;
const bgfx::Memory* fs_metaballs;
switch (bgfx::getRendererType() )
{
case bgfx::RendererType::Direct3D9:
vs_metaballs = bgfx::makeRef(vs_metaballs_dx9, sizeof(vs_metaballs_dx9) );
fs_metaballs = bgfx::makeRef(fs_metaballs_dx9, sizeof(fs_metaballs_dx9) );
break;
case bgfx::RendererType::Direct3D11:
case bgfx::RendererType::Direct3D12:
vs_metaballs = bgfx::makeRef(vs_metaballs_dx11, sizeof(vs_metaballs_dx11) );
fs_metaballs = bgfx::makeRef(fs_metaballs_dx11, sizeof(fs_metaballs_dx11) );
break;
default:
vs_metaballs = bgfx::makeRef(vs_metaballs_glsl, sizeof(vs_metaballs_glsl) );
fs_metaballs = bgfx::makeRef(fs_metaballs_glsl, sizeof(fs_metaballs_glsl) );
break;
}
bgfx::ShaderHandle vsh = bgfx::createShader(vs_metaballs);
bgfx::ShaderHandle fsh = bgfx::createShader(fs_metaballs);
// Create program from shaders.
bgfx::ProgramHandle program = bgfx::createProgram(vsh, fsh, true /* destroy shaders when program is destroyed */);
#define DIMS 32
Grid* grid = new Grid[DIMS*DIMS*DIMS];
const uint32_t ypitch = DIMS;
const uint32_t zpitch = DIMS*DIMS;
const float invdim = 1.0f/float(DIMS-1);
int64_t timeOffset = bx::getHPCounter();
while (!entry::processEvents(width, height, debug, reset) )
class Metaballs : public entry::AppI
{
void init(int /*_argc*/, char** /*_argv*/) BX_OVERRIDE
{
// Set view 0 default viewport.
bgfx::setViewRect(0, 0, 0, width, height);
m_width = 1280;
m_height = 720;
m_debug = BGFX_DEBUG_TEXT;
m_reset = BGFX_RESET_VSYNC;
// This dummy draw call is here to make sure that view 0 is cleared
// if no other draw calls are submitted to view 0.
bgfx::touch(0);
bgfx::init();
bgfx::reset(m_width, m_height, m_reset);
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency() );
const double toMs = 1000.0/freq;
float time = (float)( (now - timeOffset)/double(bx::getHPFrequency() ) );
// Enable debug text.
bgfx::setDebug(m_debug);
// Use debug font to print information about this example.
bgfx::dbgTextClear();
bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/02-metaball");
bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Rendering with transient buffers and embedding shaders.");
// Set view 0 clear state.
bgfx::setViewClear(0
, BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH
, 0x303030ff
, 1.0f
, 0
);
float at[3] = { 0.0f, 0.0f, 0.0f };
float eye[3] = { 0.0f, 0.0f, -50.0f };
// Create vertex stream declaration.
PosNormalColorVertex::init();
// Set view and projection matrix for view 0.
const bgfx::HMD* hmd = bgfx::getHMD();
if (NULL != hmd && 0 != (hmd->flags & BGFX_HMD_RENDERING) )
const bgfx::Memory* vs_metaballs;
const bgfx::Memory* fs_metaballs;
switch (bgfx::getRendererType() )
{
float view[16];
bx::mtxQuatTranslationHMD(view, hmd->eye[0].rotation, eye);
case bgfx::RendererType::Direct3D9:
vs_metaballs = bgfx::makeRef(vs_metaballs_dx9, sizeof(vs_metaballs_dx9) );
fs_metaballs = bgfx::makeRef(fs_metaballs_dx9, sizeof(fs_metaballs_dx9) );
break;
float proj[16];
bx::mtxProj(proj, hmd->eye[0].fov, 0.1f, 100.0f);
case bgfx::RendererType::Direct3D11:
case bgfx::RendererType::Direct3D12:
vs_metaballs = bgfx::makeRef(vs_metaballs_dx11, sizeof(vs_metaballs_dx11) );
fs_metaballs = bgfx::makeRef(fs_metaballs_dx11, sizeof(fs_metaballs_dx11) );
break;
bgfx::setViewTransform(0, view, proj);
// Set view 0 default viewport.
//
// Use HMD's width/height since HMD's internal frame buffer size
// might be much larger than window size.
bgfx::setViewRect(0, 0, 0, hmd->width, hmd->height);
}
else
{
float view[16];
bx::mtxLookAt(view, eye, at);
float proj[16];
bx::mtxProj(proj, 60.0f, float(width)/float(height), 0.1f, 100.0f);
bgfx::setViewTransform(0, view, proj);
// Set view 0 default viewport.
bgfx::setViewRect(0, 0, 0, width, height);
default:
vs_metaballs = bgfx::makeRef(vs_metaballs_glsl, sizeof(vs_metaballs_glsl) );
fs_metaballs = bgfx::makeRef(fs_metaballs_glsl, sizeof(fs_metaballs_glsl) );
break;
}
// Stats.
uint32_t numVertices = 0;
int64_t profUpdate = 0;
int64_t profNormal = 0;
int64_t profTriangulate = 0;
bgfx::ShaderHandle vsh = bgfx::createShader(vs_metaballs);
bgfx::ShaderHandle fsh = bgfx::createShader(fs_metaballs);
// Allocate 32K vertices in transient vertex buffer.
uint32_t maxVertices = (32<<10);
bgfx::TransientVertexBuffer tvb;
bgfx::allocTransientVertexBuffer(&tvb, maxVertices, PosNormalColorVertex::ms_decl);
// Create program from shaders.
m_program = bgfx::createProgram(vsh, fsh, true /* destroy shaders when program is destroyed */);
const uint32_t numSpheres = 16;
float sphere[numSpheres][4];
for (uint32_t ii = 0; ii < numSpheres; ++ii)
{
sphere[ii][0] = sinf(time*(ii*0.21f)+ii*0.37f) * (DIMS * 0.5f - 8.0f);
sphere[ii][1] = sinf(time*(ii*0.37f)+ii*0.67f) * (DIMS * 0.5f - 8.0f);
sphere[ii][2] = cosf(time*(ii*0.11f)+ii*0.13f) * (DIMS * 0.5f - 8.0f);
sphere[ii][3] = 1.0f/(2.0f + (sinf(time*(ii*0.13f) )*0.5f+0.5f)*2.0f);
}
profUpdate = bx::getHPCounter();
for (uint32_t zz = 0; zz < DIMS; ++zz)
{
for (uint32_t yy = 0; yy < DIMS; ++yy)
{
uint32_t offset = (zz*DIMS+yy)*DIMS;
for (uint32_t xx = 0; xx < DIMS; ++xx)
{
uint32_t xoffset = offset + xx;
float dist = 0.0f;
float prod = 1.0f;
for (uint32_t ii = 0; ii < numSpheres; ++ii)
{
const float* pos = sphere[ii];
float dx = pos[0] - (-DIMS*0.5f + float(xx) );
float dy = pos[1] - (-DIMS*0.5f + float(yy) );
float dz = pos[2] - (-DIMS*0.5f + float(zz) );
float invr = pos[3];
float dot = dx*dx + dy*dy + dz*dz;
dot *= invr*invr;
dist *= dot;
dist += prod;
prod *= dot;
}
grid[xoffset].m_val = dist / prod - 1.0f;
}
}
}
profUpdate = bx::getHPCounter() - profUpdate;
profNormal = bx::getHPCounter();
for (uint32_t zz = 1; zz < DIMS-1; ++zz)
{
for (uint32_t yy = 1; yy < DIMS-1; ++yy)
{
uint32_t offset = (zz*DIMS+yy)*DIMS;
for (uint32_t xx = 1; xx < DIMS-1; ++xx)
{
uint32_t xoffset = offset + xx;
float normal[3] =
{
grid[xoffset-1 ].m_val - grid[xoffset+1 ].m_val,
grid[xoffset-ypitch].m_val - grid[xoffset+ypitch].m_val,
grid[xoffset-zpitch].m_val - grid[xoffset+zpitch].m_val,
};
bx::vec3Norm(grid[xoffset].m_normal, normal);
}
}
}
profNormal = bx::getHPCounter() - profNormal;
profTriangulate = bx::getHPCounter();
PosNormalColorVertex* vertex = (PosNormalColorVertex*)tvb.data;
for (uint32_t zz = 0; zz < DIMS-1 && numVertices+12 < maxVertices; ++zz)
{
float rgb[6];
rgb[2] = zz*invdim;
rgb[5] = (zz+1)*invdim;
for (uint32_t yy = 0; yy < DIMS-1 && numVertices+12 < maxVertices; ++yy)
{
uint32_t offset = (zz*DIMS+yy)*DIMS;
rgb[1] = yy*invdim;
rgb[4] = (yy+1)*invdim;
for (uint32_t xx = 0; xx < DIMS-1 && numVertices+12 < maxVertices; ++xx)
{
uint32_t xoffset = offset + xx;
rgb[0] = xx*invdim;
rgb[3] = (xx+1)*invdim;
float pos[3] =
{
-DIMS*0.5f + float(xx),
-DIMS*0.5f + float(yy),
-DIMS*0.5f + float(zz)
};
const Grid* val[8] = {
&grid[xoffset+zpitch+ypitch ],
&grid[xoffset+zpitch+ypitch+1],
&grid[xoffset+ypitch+1 ],
&grid[xoffset+ypitch ],
&grid[xoffset+zpitch ],
&grid[xoffset+zpitch+1 ],
&grid[xoffset+1 ],
&grid[xoffset ],
};
uint32_t num = triangulate( (uint8_t*)vertex, PosNormalColorVertex::ms_decl.getStride(), rgb, pos, val, 0.5f);
vertex += num;
numVertices += num;
}
}
}
profTriangulate = bx::getHPCounter() - profTriangulate;
float mtx[16];
bx::mtxRotateXY(mtx, time*0.67f, time);
// Set model matrix for rendering.
bgfx::setTransform(mtx);
// Set vertex and index buffer.
bgfx::setVertexBuffer(&tvb, 0, numVertices);
// Set render states.
bgfx::setState(BGFX_STATE_DEFAULT);
// Submit primitive for rendering to view 0.
bgfx::submit(0, program);
// Display stats.
bgfx::dbgTextPrintf(1, 4, 0x0f, "Num vertices: %5d (%6.4f%%)", numVertices, float(numVertices)/maxVertices * 100);
bgfx::dbgTextPrintf(1, 5, 0x0f, " Update: % 7.3f[ms]", double(profUpdate)*toMs);
bgfx::dbgTextPrintf(1, 6, 0x0f, "Calc normals: % 7.3f[ms]", double(profNormal)*toMs);
bgfx::dbgTextPrintf(1, 7, 0x0f, " Triangulate: % 7.3f[ms]", double(profTriangulate)*toMs);
bgfx::dbgTextPrintf(1, 8, 0x0f, " Frame: % 7.3f[ms]", double(frameTime)*toMs);
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
bgfx::frame();
m_grid = new Grid[DIMS*DIMS*DIMS];
m_timeOffset = bx::getHPCounter();
}
delete [] grid;
int shutdown() BX_OVERRIDE
{
delete [] m_grid;
// Cleanup.
bgfx::destroyProgram(program);
// Cleanup.
bgfx::destroyProgram(m_program);
// Shutdown bgfx.
bgfx::shutdown();
// Shutdown bgfx.
bgfx::shutdown();
return 0;
}
return 0;
}
bool update() BX_OVERRIDE
{
const uint32_t ypitch = DIMS;
const uint32_t zpitch = DIMS*DIMS;
const float invdim = 1.0f/float(DIMS-1);
if (!entry::processEvents(m_width, m_height, m_debug, m_reset) )
{
// Set view 0 default viewport.
bgfx::setViewRect(0, 0, 0, m_width, m_height);
// This dummy draw call is here to make sure that view 0 is cleared
// if no other draw calls are submitted to view 0.
bgfx::touch(0);
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency() );
const double toMs = 1000.0/freq;
float time = (float)( (now - m_timeOffset)/double(bx::getHPFrequency() ) );
// Use debug font to print information about this example.
bgfx::dbgTextClear();
bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/02-metaball");
bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Rendering with transient buffers and embedding shaders.");
float at[3] = { 0.0f, 0.0f, 0.0f };
float eye[3] = { 0.0f, 0.0f, -50.0f };
// Set view and projection matrix for view 0.
const bgfx::HMD* hmd = bgfx::getHMD();
if (NULL != hmd && 0 != (hmd->flags & BGFX_HMD_RENDERING) )
{
float view[16];
bx::mtxQuatTranslationHMD(view, hmd->eye[0].rotation, eye);
float proj[16];
bx::mtxProj(proj, hmd->eye[0].fov, 0.1f, 100.0f);
bgfx::setViewTransform(0, view, proj);
// Set view 0 default viewport.
//
// Use HMD's width/height since HMD's internal frame buffer size
// might be much larger than window size.
bgfx::setViewRect(0, 0, 0, hmd->width, hmd->height);
}
else
{
float view[16];
bx::mtxLookAt(view, eye, at);
float proj[16];
bx::mtxProj(proj, 60.0f, float(m_width)/float(m_height), 0.1f, 100.0f);
bgfx::setViewTransform(0, view, proj);
// Set view 0 default viewport.
bgfx::setViewRect(0, 0, 0, m_width, m_height);
}
// Stats.
uint32_t numVertices = 0;
int64_t profUpdate = 0;
int64_t profNormal = 0;
int64_t profTriangulate = 0;
// Allocate 32K vertices in transient vertex buffer.
uint32_t maxVertices = (32<<10);
bgfx::TransientVertexBuffer tvb;
bgfx::allocTransientVertexBuffer(&tvb, maxVertices, PosNormalColorVertex::ms_decl);
const uint32_t numSpheres = 16;
float sphere[numSpheres][4];
for (uint32_t ii = 0; ii < numSpheres; ++ii)
{
sphere[ii][0] = sinf(time*(ii*0.21f)+ii*0.37f) * (DIMS * 0.5f - 8.0f);
sphere[ii][1] = sinf(time*(ii*0.37f)+ii*0.67f) * (DIMS * 0.5f - 8.0f);
sphere[ii][2] = cosf(time*(ii*0.11f)+ii*0.13f) * (DIMS * 0.5f - 8.0f);
sphere[ii][3] = 1.0f/(2.0f + (sinf(time*(ii*0.13f) )*0.5f+0.5f)*2.0f);
}
profUpdate = bx::getHPCounter();
for (uint32_t zz = 0; zz < DIMS; ++zz)
{
for (uint32_t yy = 0; yy < DIMS; ++yy)
{
uint32_t offset = (zz*DIMS+yy)*DIMS;
for (uint32_t xx = 0; xx < DIMS; ++xx)
{
uint32_t xoffset = offset + xx;
float dist = 0.0f;
float prod = 1.0f;
for (uint32_t ii = 0; ii < numSpheres; ++ii)
{
const float* pos = sphere[ii];
float dx = pos[0] - (-DIMS*0.5f + float(xx) );
float dy = pos[1] - (-DIMS*0.5f + float(yy) );
float dz = pos[2] - (-DIMS*0.5f + float(zz) );
float invr = pos[3];
float dot = dx*dx + dy*dy + dz*dz;
dot *= invr*invr;
dist *= dot;
dist += prod;
prod *= dot;
}
m_grid[xoffset].m_val = dist / prod - 1.0f;
}
}
}
profUpdate = bx::getHPCounter() - profUpdate;
profNormal = bx::getHPCounter();
for (uint32_t zz = 1; zz < DIMS-1; ++zz)
{
for (uint32_t yy = 1; yy < DIMS-1; ++yy)
{
uint32_t offset = (zz*DIMS+yy)*DIMS;
for (uint32_t xx = 1; xx < DIMS-1; ++xx)
{
uint32_t xoffset = offset + xx;
Grid* grid = m_grid;
float normal[3] =
{
grid[xoffset-1 ].m_val - grid[xoffset+1 ].m_val,
grid[xoffset-ypitch].m_val - grid[xoffset+ypitch].m_val,
grid[xoffset-zpitch].m_val - grid[xoffset+zpitch].m_val,
};
bx::vec3Norm(grid[xoffset].m_normal, normal);
}
}
}
profNormal = bx::getHPCounter() - profNormal;
profTriangulate = bx::getHPCounter();
PosNormalColorVertex* vertex = (PosNormalColorVertex*)tvb.data;
for (uint32_t zz = 0; zz < DIMS-1 && numVertices+12 < maxVertices; ++zz)
{
float rgb[6];
rgb[2] = zz*invdim;
rgb[5] = (zz+1)*invdim;
for (uint32_t yy = 0; yy < DIMS-1 && numVertices+12 < maxVertices; ++yy)
{
uint32_t offset = (zz*DIMS+yy)*DIMS;
rgb[1] = yy*invdim;
rgb[4] = (yy+1)*invdim;
for (uint32_t xx = 0; xx < DIMS-1 && numVertices+12 < maxVertices; ++xx)
{
uint32_t xoffset = offset + xx;
rgb[0] = xx*invdim;
rgb[3] = (xx+1)*invdim;
float pos[3] =
{
-DIMS*0.5f + float(xx),
-DIMS*0.5f + float(yy),
-DIMS*0.5f + float(zz)
};
const Grid* grid = m_grid;
const Grid* val[8] = {
&grid[xoffset+zpitch+ypitch ],
&grid[xoffset+zpitch+ypitch+1],
&grid[xoffset+ypitch+1 ],
&grid[xoffset+ypitch ],
&grid[xoffset+zpitch ],
&grid[xoffset+zpitch+1 ],
&grid[xoffset+1 ],
&grid[xoffset ],
};
uint32_t num = triangulate( (uint8_t*)vertex, PosNormalColorVertex::ms_decl.getStride(), rgb, pos, val, 0.5f);
vertex += num;
numVertices += num;
}
}
}
profTriangulate = bx::getHPCounter() - profTriangulate;
float mtx[16];
bx::mtxRotateXY(mtx, time*0.67f, time);
// Set model matrix for rendering.
bgfx::setTransform(mtx);
// Set vertex and index buffer.
bgfx::setVertexBuffer(&tvb, 0, numVertices);
// Set render states.
bgfx::setState(BGFX_STATE_DEFAULT);
// Submit primitive for rendering to view 0.
bgfx::submit(0, m_program);
// Display stats.
bgfx::dbgTextPrintf(1, 4, 0x0f, "Num vertices: %5d (%6.4f%%)", numVertices, float(numVertices)/maxVertices * 100);
bgfx::dbgTextPrintf(1, 5, 0x0f, " Update: % 7.3f[ms]", double(profUpdate)*toMs);
bgfx::dbgTextPrintf(1, 6, 0x0f, "Calc normals: % 7.3f[ms]", double(profNormal)*toMs);
bgfx::dbgTextPrintf(1, 7, 0x0f, " Triangulate: % 7.3f[ms]", double(profTriangulate)*toMs);
bgfx::dbgTextPrintf(1, 8, 0x0f, " Frame: % 7.3f[ms]", double(frameTime)*toMs);
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
bgfx::frame();
return true;
}
return false;
}
uint32_t m_width;
uint32_t m_height;
uint32_t m_debug;
uint32_t m_reset;
bgfx::ProgramHandle m_program;
Grid* m_grid;
int64_t m_timeOffset;
};
ENTRY_IMPLEMENT_MAIN(Metaballs);

View File

@@ -13,10 +13,6 @@
#include "vs_drawstress.bin.h"
#include "fs_drawstress.bin.h"
#if BX_PLATFORM_EMSCRIPTEN
# include <emscripten.h>
#endif // BX_PLATFORM_EMSCRIPTEN
struct PosColorVertex
{
float m_x;
@@ -66,25 +62,6 @@ static const uint16_t s_cubeIndices[36] =
6, 3, 7,
};
uint32_t width = 1280;
uint32_t height = 720;
uint32_t debug = BGFX_DEBUG_TEXT;
uint32_t reset = BGFX_RESET_NONE;
bool autoAdjust = true;
int32_t scrollArea = 0;
int32_t dim = 16;
int32_t maxDim = 40;
uint32_t transform = 0;
entry::MouseState mouseState;
int64_t timeOffset = bx::getHPCounter();
int64_t deltaTimeNs = 0;
int64_t deltaTimeAvgNs = 0;
int64_t numFrames = 0;
#if BX_PLATFORM_EMSCRIPTEN || BX_PLATFORM_NACL
static const int64_t highwm = 1000000/35;
static const int64_t lowwm = 1000000/27;
@@ -93,239 +70,272 @@ static const int64_t highwm = 1000000/65;
static const int64_t lowwm = 1000000/57;
#endif // BX_PLATFORM_EMSCRIPTEN || BX_PLATFORM_NACL
bgfx::ProgramHandle program;
bgfx::VertexBufferHandle vbh;
bgfx::IndexBufferHandle ibh;
BX_NO_INLINE bool mainloop()
class DrawStress : public entry::AppI
{
if (!entry::processEvents(width, height, debug, reset, &mouseState) )
void init(int /*_argc*/, char** /*_argv*/) BX_OVERRIDE
{
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t hpFreq = bx::getHPFrequency();
const int64_t frameTime = now - last;
last = now;
const double freq = double(hpFreq);
const double toMs = 1000.0/freq;
BX_UNUSED(_argc, _argv);
deltaTimeNs += frameTime*1000000/hpFreq;
m_width = 1280;
m_height = 720;
m_debug = BGFX_DEBUG_TEXT;
m_reset = BGFX_RESET_NONE;
if (deltaTimeNs > 1000000)
m_autoAdjust = true;
m_scrollArea = 0;
m_dim = 16;
m_maxDim = 40;
m_transform = 0;
m_timeOffset = bx::getHPCounter();
m_deltaTimeNs = 0;
m_deltaTimeAvgNs = 0;
m_numFrames = 0;
bgfx::init();
bgfx::reset(m_width, m_height, m_reset);
const bgfx::Caps* caps = bgfx::getCaps();
m_maxDim = (int32_t)powf(float(caps->maxDrawCalls), 1.0f/3.0f);
// Enable debug text.
bgfx::setDebug(m_debug);
// Set view 0 clear state.
bgfx::setViewClear(0
, BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH
, 0x303030ff
, 1.0f
, 0
);
// Create vertex stream declaration.
PosColorVertex::init();
const bgfx::Memory* vs_drawstress;
const bgfx::Memory* fs_drawstress;
switch (bgfx::getRendererType() )
{
deltaTimeAvgNs = deltaTimeNs / bx::int64_max(1, numFrames);
case bgfx::RendererType::Direct3D9:
vs_drawstress = bgfx::makeRef(vs_drawstress_dx9, sizeof(vs_drawstress_dx9) );
fs_drawstress = bgfx::makeRef(fs_drawstress_dx9, sizeof(fs_drawstress_dx9) );
break;
if (autoAdjust)
case bgfx::RendererType::Direct3D11:
case bgfx::RendererType::Direct3D12:
vs_drawstress = bgfx::makeRef(vs_drawstress_dx11, sizeof(vs_drawstress_dx11) );
fs_drawstress = bgfx::makeRef(fs_drawstress_dx11, sizeof(fs_drawstress_dx11) );
break;
default:
vs_drawstress = bgfx::makeRef(vs_drawstress_glsl, sizeof(vs_drawstress_glsl) );
fs_drawstress = bgfx::makeRef(fs_drawstress_glsl, sizeof(fs_drawstress_glsl) );
break;
}
// Create program from shaders.
m_program = bgfx::createProgram(
bgfx::createShader(vs_drawstress)
, bgfx::createShader(fs_drawstress)
, true /* destroy shaders when program is destroyed */
);
// Create static vertex buffer.
m_vbh = bgfx::createVertexBuffer(
bgfx::makeRef(s_cubeVertices, sizeof(s_cubeVertices) )
, PosColorVertex::ms_decl
);
// Create static index buffer.
m_ibh = bgfx::createIndexBuffer(bgfx::makeRef(s_cubeIndices, sizeof(s_cubeIndices) ) );
// Imgui.
imguiCreate();
}
int shutdown() BX_OVERRIDE
{
// Cleanup.
imguiDestroy();
bgfx::destroyIndexBuffer(m_ibh);
bgfx::destroyVertexBuffer(m_vbh);
bgfx::destroyProgram(m_program);
// Shutdown bgfx.
bgfx::shutdown();
return 0;
}
bool update() BX_OVERRIDE
{
entry::MouseState mouseState;
if (!entry::processEvents(m_width, m_height, m_debug, m_reset, &mouseState) )
{
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t hpFreq = bx::getHPFrequency();
const int64_t frameTime = now - last;
last = now;
const double freq = double(hpFreq);
const double toMs = 1000.0/freq;
m_deltaTimeNs += frameTime*1000000/hpFreq;
if (m_deltaTimeNs > 1000000)
{
if (deltaTimeAvgNs < highwm)
m_deltaTimeAvgNs = m_deltaTimeNs / bx::int64_max(1, m_numFrames);
if (m_autoAdjust)
{
dim = bx::uint32_min(dim + 2, maxDim);
if (m_deltaTimeAvgNs < highwm)
{
m_dim = bx::uint32_min(m_dim + 2, m_maxDim);
}
else if (m_deltaTimeAvgNs > lowwm)
{
m_dim = bx::uint32_max(m_dim - 1, 2);
}
}
else if (deltaTimeAvgNs > lowwm)
m_deltaTimeNs = 0;
m_numFrames = 0;
}
else
{
++m_numFrames;
}
float time = (float)( (now-m_timeOffset)/freq);
imguiBeginFrame(mouseState.m_mx
, mouseState.m_my
, (mouseState.m_buttons[entry::MouseButton::Left ] ? IMGUI_MBUT_LEFT : 0)
| (mouseState.m_buttons[entry::MouseButton::Right ] ? IMGUI_MBUT_RIGHT : 0)
, mouseState.m_mz
, m_width
, m_height
);
imguiBeginScrollArea("Settings", m_width - m_width / 4 - 10, 10, m_width / 4, m_height / 3, &m_scrollArea);
imguiSeparatorLine();
m_transform = imguiChoose(m_transform
, "Rotate"
, "No fragments"
);
imguiSeparatorLine();
if (imguiCheck("Auto adjust", m_autoAdjust) )
{
m_autoAdjust ^= true;
}
imguiSlider("Dim", m_dim, 5, m_maxDim);
imguiLabel("Draw calls: %d", m_dim*m_dim*m_dim);
imguiLabel("Avg Delta Time (1 second) [ms]: %0.4f", m_deltaTimeAvgNs/1000.0f);
imguiEndScrollArea();
imguiEndFrame();
float at[3] = { 0.0f, 0.0f, 0.0f };
float eye[3] = { 0.0f, 0.0f, -35.0f };
float view[16];
float proj[16];
bx::mtxLookAt(view, eye, at);
bx::mtxProj(proj, 60.0f, float(m_width)/float(m_height), 0.1f, 100.0f);
// Set view and projection matrix for view 0.
bgfx::setViewTransform(0, view, proj);
// Set view 0 default viewport.
bgfx::setViewRect(0, 0, 0, m_width, m_height);
// This dummy draw call is here to make sure that view 0 is cleared
// if no other draw calls are submitted to view 0.
bgfx::touch(0);
// Use debug font to print information about this example.
bgfx::dbgTextClear();
bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/17-drawstress");
bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Draw stress, maximizing number of draw calls.");
bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: %7.3f[ms]", double(frameTime)*toMs);
float mtxS[16];
const float scale = 0 == m_transform ? 0.25f : 0.0f;
bx::mtxScale(mtxS, scale, scale, scale);
const float step = 0.6f;
float pos[3];
pos[0] = -step*m_dim / 2.0f;
pos[1] = -step*m_dim / 2.0f;
pos[2] = -15.0;
for (uint32_t zz = 0; zz < uint32_t(m_dim); ++zz)
{
for (uint32_t yy = 0; yy < uint32_t(m_dim); ++yy)
{
dim = bx::uint32_max(dim - 1, 2);
for (uint32_t xx = 0; xx < uint32_t(m_dim); ++xx)
{
float mtxR[16];
bx::mtxRotateXYZ(mtxR, time + xx*0.21f, time + yy*0.37f, time + yy*0.13f);
float mtx[16];
bx::mtxMul(mtx, mtxS, mtxR);
mtx[12] = pos[0] + float(xx)*step;
mtx[13] = pos[1] + float(yy)*step;
mtx[14] = pos[2] + float(zz)*step;
// Set model matrix for rendering.
bgfx::setTransform(mtx);
// Set vertex and index buffer.
bgfx::setVertexBuffer(m_vbh);
bgfx::setIndexBuffer(m_ibh);
// Set render states.
bgfx::setState(BGFX_STATE_DEFAULT);
// Submit primitive for rendering to view 0.
bgfx::submit(0, m_program);
}
}
}
deltaTimeNs = 0;
numFrames = 0;
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
bgfx::frame();
return true;
}
else
{
++numFrames;
}
float time = (float)( (now-timeOffset)/freq);
imguiBeginFrame(mouseState.m_mx
, mouseState.m_my
, (mouseState.m_buttons[entry::MouseButton::Left ] ? IMGUI_MBUT_LEFT : 0)
| (mouseState.m_buttons[entry::MouseButton::Right ] ? IMGUI_MBUT_RIGHT : 0)
, mouseState.m_mz
, width
, height
);
imguiBeginScrollArea("Settings", width - width / 4 - 10, 10, width / 4, height / 3, &scrollArea);
imguiSeparatorLine();
transform = imguiChoose(transform
, "Rotate"
, "No fragments"
);
imguiSeparatorLine();
if (imguiCheck("Auto adjust", autoAdjust) )
{
autoAdjust ^= true;
}
imguiSlider("Dim", dim, 5, maxDim);
imguiLabel("Draw calls: %d", dim*dim*dim);
imguiLabel("Avg Delta Time (1 second) [ms]: %0.4f", deltaTimeAvgNs/1000.0f);
imguiEndScrollArea();
imguiEndFrame();
float at[3] = { 0.0f, 0.0f, 0.0f };
float eye[3] = { 0.0f, 0.0f, -35.0f };
float view[16];
float proj[16];
bx::mtxLookAt(view, eye, at);
bx::mtxProj(proj, 60.0f, float(width)/float(height), 0.1f, 100.0f);
// Set view and projection matrix for view 0.
bgfx::setViewTransform(0, view, proj);
// Set view 0 default viewport.
bgfx::setViewRect(0, 0, 0, width, height);
// This dummy draw call is here to make sure that view 0 is cleared
// if no other draw calls are submitted to view 0.
bgfx::touch(0);
// Use debug font to print information about this example.
bgfx::dbgTextClear();
bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/17-drawstress");
bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Draw stress, maximizing number of draw calls.");
bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: %7.3f[ms]", double(frameTime)*toMs);
float mtxS[16];
const float scale = 0 == transform ? 0.25f : 0.0f;
bx::mtxScale(mtxS, scale, scale, scale);
const float step = 0.6f;
float pos[3];
pos[0] = -step*dim / 2.0f;
pos[1] = -step*dim / 2.0f;
pos[2] = -15.0;
for (uint32_t zz = 0; zz < uint32_t(dim); ++zz)
{
for (uint32_t yy = 0; yy < uint32_t(dim); ++yy)
{
for (uint32_t xx = 0; xx < uint32_t(dim); ++xx)
{
float mtxR[16];
bx::mtxRotateXYZ(mtxR, time + xx*0.21f, time + yy*0.37f, time + yy*0.13f);
float mtx[16];
bx::mtxMul(mtx, mtxS, mtxR);
mtx[12] = pos[0] + float(xx)*step;
mtx[13] = pos[1] + float(yy)*step;
mtx[14] = pos[2] + float(zz)*step;
// Set model matrix for rendering.
bgfx::setTransform(mtx);
// Set vertex and index buffer.
bgfx::setVertexBuffer(vbh);
bgfx::setIndexBuffer(ibh);
// Set render states.
bgfx::setState(BGFX_STATE_DEFAULT);
// Submit primitive for rendering to view 0.
bgfx::submit(0, program);
}
}
}
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
bgfx::frame();
return false;
}
return true;
}
uint32_t m_width;
uint32_t m_height;
uint32_t m_debug;
uint32_t m_reset;
void loop()
{
mainloop();
}
bool m_autoAdjust;
int32_t m_scrollArea;
int32_t m_dim;
int32_t m_maxDim;
uint32_t m_transform;
int _main_(int /*_argc*/, char** /*_argv*/)
{
bgfx::init();
bgfx::reset(width, height, reset);
int64_t m_timeOffset;
const bgfx::Caps* caps = bgfx::getCaps();
maxDim = (int32_t)powf(float(caps->maxDrawCalls), 1.0f/3.0f);
int64_t m_deltaTimeNs;
int64_t m_deltaTimeAvgNs;
int64_t m_numFrames;
// Enable debug text.
bgfx::setDebug(debug);
bgfx::ProgramHandle m_program;
bgfx::VertexBufferHandle m_vbh;
bgfx::IndexBufferHandle m_ibh;
};
// Set view 0 clear state.
bgfx::setViewClear(0
, BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH
, 0x303030ff
, 1.0f
, 0
);
// Create vertex stream declaration.
PosColorVertex::init();
const bgfx::Memory* vs_drawstress;
const bgfx::Memory* fs_drawstress;
switch (bgfx::getRendererType() )
{
case bgfx::RendererType::Direct3D9:
vs_drawstress = bgfx::makeRef(vs_drawstress_dx9, sizeof(vs_drawstress_dx9) );
fs_drawstress = bgfx::makeRef(fs_drawstress_dx9, sizeof(fs_drawstress_dx9) );
break;
case bgfx::RendererType::Direct3D11:
case bgfx::RendererType::Direct3D12:
vs_drawstress = bgfx::makeRef(vs_drawstress_dx11, sizeof(vs_drawstress_dx11) );
fs_drawstress = bgfx::makeRef(fs_drawstress_dx11, sizeof(fs_drawstress_dx11) );
break;
default:
vs_drawstress = bgfx::makeRef(vs_drawstress_glsl, sizeof(vs_drawstress_glsl) );
fs_drawstress = bgfx::makeRef(fs_drawstress_glsl, sizeof(fs_drawstress_glsl) );
break;
}
// Create program from shaders.
program = bgfx::createProgram(
bgfx::createShader(vs_drawstress)
, bgfx::createShader(fs_drawstress)
, true /* destroy shaders when program is destroyed */
);
const bgfx::Memory* mem;
// Create static vertex buffer.
mem = bgfx::makeRef(s_cubeVertices, sizeof(s_cubeVertices) );
vbh = bgfx::createVertexBuffer(mem, PosColorVertex::ms_decl);
// Create static index buffer.
mem = bgfx::makeRef(s_cubeIndices, sizeof(s_cubeIndices) );
ibh = bgfx::createIndexBuffer(mem);
// Imgui.
imguiCreate();
#if BX_PLATFORM_EMSCRIPTEN
emscripten_set_main_loop(&loop, -1, 1);
#else
while (!mainloop() );
#endif // BX_PLATFORM_EMSCRIPTEN
// Cleanup.
imguiDestroy();
bgfx::destroyIndexBuffer(ibh);
bgfx::destroyVertexBuffer(vbh);
bgfx::destroyProgram(program);
// Shutdown bgfx.
bgfx::shutdown();
return 0;
}
ENTRY_IMPLEMENT_MAIN(DrawStress);

View File

@@ -107,7 +107,7 @@ static bgfx::ShaderHandle loadShader(bx::FileReaderI* _reader, const char* _name
case bgfx::RendererType::Metal:
shaderPath = "shaders/metal/";
break;
case bgfx::RendererType::OpenGLES:
shaderPath = "shaders/gles/";
break;

View File

@@ -9,6 +9,10 @@
#include <time.h>
#if BX_PLATFORM_EMSCRIPTEN
# include <emscripten.h>
#endif // BX_PLATFORM_EMSCRIPTEN
#include "entry_p.h"
#include "cmd.h"
#include "input.h"
@@ -304,6 +308,28 @@ BX_PRAGMA_DIAGNOSTIC_POP();
INPUT_BINDING_END
};
#if BX_PLATFORM_EMSCRIPTEN
static AppI* s_app;
static void updateApp()
{
s_app->update();
}
#endif // BX_PLATFORM_EMSCRIPTEN
int runApp(AppI* _app, int _argc, char** _argv)
{
_app->init(_argc, _argv);
#if BX_PLATFORM_EMSCRIPTEN
s_app = _app;
emscripten_set_main_loop(&updateApp, -1, 1);
#else
while (_app->update() );
#endif // BX_PLATFORM_EMSCRIPTEN
return _app->shutdown();
}
int main(int _argc, char** _argv)
{
//DBG(BX_COMPILER_NAME " / " BX_CPU_NAME " / " BX_ARCH_NAME " / " BX_PLATFORM_NAME);

View File

@@ -18,6 +18,13 @@ extern "C" int _main_(int _argc, char** _argv);
#define ENTRY_WINDOW_FLAG_ASPECT_RATIO UINT32_C(0x00000001)
#define ENTRY_WINDOW_FLAG_FRAME UINT32_C(0x00000002)
#define ENTRY_IMPLEMENT_MAIN(_app) \
int _main_(int _argc, char** _argv) \
{ \
_app app; \
return entry::runApp(&app, _argc, _argv); \
}
namespace entry
{
struct WindowHandle { uint16_t idx; };
@@ -55,8 +62,7 @@ namespace entry
};
struct Modifier
{
enum Enum
{ enum Enum
{
None = 0,
LeftAlt = 0x01,
@@ -244,6 +250,20 @@ namespace entry
bool processWindowEvents(WindowState& _state, uint32_t& _debug, uint32_t& _reset);
struct BX_NO_VTABLE AppI
{
virtual ~AppI() = 0;
virtual void init(int _argc, char** _argv) = 0;
virtual int shutdown() = 0;
virtual bool update() = 0;
};
inline AppI::~AppI()
{
}
int runApp(AppI* _app, int _argc, char** _argv);
} // namespace entry
#endif // ENTRY_H_HEADER_GUARD