Files
bx/include/bx/math.h
Бранимир Караџић 34d2948860 Use rcpSafe.
2024-10-09 19:55:49 -07:00

803 lines
17 KiB
C++

/*
* Copyright 2011-2024 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bx/blob/master/LICENSE
*/
#ifndef BX_MATH_H_HEADER_GUARD
#define BX_MATH_H_HEADER_GUARD
#include "bx.h"
#include "uint32_t.h"
namespace bx
{
///
typedef float (*LerpFn)(float _a, float _b, float _t);
///
struct Handedness
{
enum Enum
{
Left,
Right,
};
};
///
struct NearFar
{
enum Enum
{
Default,
Reverse,
};
};
///
struct Vec3
{
Vec3() = delete;
///
Vec3(InitNoneTag);
///
constexpr Vec3(InitZeroTag);
///
constexpr Vec3(InitIdentityTag);
///
explicit constexpr Vec3(float _v);
///
constexpr Vec3(float _x, float _y, float _z);
float x, y, z;
};
///
struct Plane
{
Plane() = delete;
///
Plane(InitNoneTag);
///
constexpr Plane(InitZeroTag);
///
constexpr Plane(InitIdentityTag);
///
constexpr Plane(Vec3 _normal, float _dist);
Vec3 normal;
float dist;
};
///
struct Quaternion
{
Quaternion() = delete;
///
Quaternion(InitNoneTag);
///
constexpr Quaternion(InitZeroTag);
///
constexpr Quaternion(InitIdentityTag);
///
constexpr Quaternion(float _x, float _y, float _z, float _w);
float x, y, z, w;
};
/// Returns converted the argument _deg to radians.
///
BX_CONSTEXPR_FUNC float toRad(float _deg);
/// Returns converted the argument _rad to degrees.
///
BX_CONSTEXPR_FUNC float toDeg(float _rad);
/// Reinterprets the bit pattern of _a as uint32_t.
///
BX_CONST_FUNC uint32_t floatToBits(float _a);
/// Reinterprets the bit pattern of _a as float.
///
BX_CONST_FUNC float bitsToFloat(uint32_t _a);
/// Reinterprets the bit pattern of _a as uint64_t.
///
BX_CONST_FUNC uint64_t doubleToBits(double _a);
/// Reinterprets the bit pattern of _a as double.
///
BX_CONST_FUNC double bitsToDouble(uint64_t _a);
/// Returns sortable floating point value.
///
BX_CONST_FUNC uint32_t floatFlip(uint32_t _value);
/// Returns true if _f is a number that is NaN.
///
BX_CONST_FUNC bool isNan(float _f);
/// Returns true if _f is a number that is NaN.
///
BX_CONST_FUNC bool isNan(double _f);
/// Returns true if _f is not infinite and is not a NaN.
///
BX_CONST_FUNC bool isFinite(float _f);
/// Returns true if _f is not infinite and is not a NaN.
///
BX_CONST_FUNC bool isFinite(double _f);
/// Returns true if _f is infinite and is not a NaN.
///
BX_CONST_FUNC bool isInfinite(float _f);
/// Returns true if _f is infinite and is not a NaN.
///
BX_CONST_FUNC bool isInfinite(double _f);
/// Returns the largest integer value not greater than _f.
///
BX_CONSTEXPR_FUNC float floor(float _f);
/// Returns the smallest integer value not less than _f.
///
BX_CONSTEXPR_FUNC float ceil(float _f);
/// Returns the nearest integer value to _f, rounding halfway cases away from zero,
///
BX_CONSTEXPR_FUNC float round(float _f);
/// Returns linear interpolation between two values _a and _b.
///
BX_CONSTEXPR_FUNC float lerp(float _a, float _b, float _t);
/// Returns inverse linear interpolation of _value between two values _a and _b.
///
BX_CONSTEXPR_FUNC float invLerp(float _a, float _b, float _value);
/// Extracts the sign of value `_a`.
///
/// @param[in] _a Value.
///
/// @returns -1 if `_a` is less than zero, 0 if `_a` is equal to 0, or +1 if `_a` is greater than zero.
///
BX_CONSTEXPR_FUNC float sign(float _a);
/// Returns `true` if the velue `_a` is negative.
///
/// @param[in] _a Value.
///
/// @returns `true` if `_a` is less than zero, otherwise returns `false`.
///
BX_CONSTEXPR_FUNC bool signBit(float _a);
/// Returns value with the magnitude `_value`, and the sign of `_sign`.
///
/// @param[in] _value Value.
/// @param[in] _sign Sign.
///
/// @returns Value with the magnitude `_value`, and the sign of `_sign`.
///
BX_CONSTEXPR_FUNC float copySign(float _value, float _sign);
/// Returns the absolute of _a.
///
BX_CONSTEXPR_FUNC float abs(float _a);
/// Returns the square of _a.
///
BX_CONSTEXPR_FUNC float square(float _a);
/// Returns the both sine and cosine of the argument _a.
///
/// @remarks The function calculates cosine, and then approximates sine based on the cosine
/// result. Therefore calculation of sine is less accurate than calling `bx::sin` function.
///
void sinCosApprox(float& _outSinApprox, float& _outCos, float _a);
/// Returns the sine of the argument _a.
///
BX_CONST_FUNC float sin(float _a);
/// Returns hyperbolic sine of the argument _a.
///
BX_CONST_FUNC float sinh(float _a);
/// Returns radian angle between -pi/2 and +pi/2 whose sine is _a.
///
BX_CONST_FUNC float asin(float _a);
/// Returns the cosine of the argument _a.
///
BX_CONST_FUNC float cos(float _a);
/// Returns hyperbolic cosine of the argument _a.
///
BX_CONST_FUNC float cosh(float _a);
/// Returns radian angle between 0 and pi whose cosine is _a.
///
BX_CONST_FUNC float acos(float _a);
/// Returns the circular tangent of the radian argument _a.
///
BX_CONST_FUNC float tan(float _a);
/// Returns hyperbolic tangent of the argument _a.
///
BX_CONST_FUNC float tanh(float _a);
/// Returns radian angle between -pi/2 and +pi/2 whose tangent is _a.
///
BX_CONST_FUNC float atan(float _a);
/// Returns the inverse tangent of _y/_x.
///
BX_CONST_FUNC float atan2(float _y, float _x);
/// Computes _a raised to the _b power.
///
BX_CONST_FUNC float pow(float _a, float _b);
/// Returns the result of multiplying _a by 2 raised to the power of the exponent.
///
BX_CONST_FUNC float ldexp(float _a, int32_t _b);
/// Returns decomposed given floating point value _a into a normalized fraction and
/// an integral power of two.
///
float frexp(float _a, int32_t* _outExp);
/// Returns e (2.71828...) raised to the _a power.
///
BX_CONST_FUNC float exp(float _a);
/// Returns 2 raised to the _a power.
///
BX_CONST_FUNC float exp2(float _a);
/// Returns the base e (2.71828...) logarithm of _a.
///
BX_CONST_FUNC float log(float _a);
/// Returns the base 2 logarithm of _a.
///
BX_CONST_FUNC float log2(float _a);
/// Count number of bits set.
///
template<typename Ty>
BX_CONSTEXPR_FUNC uint8_t countBits(Ty _val);
/// Count number of leading zeros.
///
template<typename Ty>
BX_CONSTEXPR_FUNC uint8_t countLeadingZeros(Ty _val);
/// Count number of trailing zeros.
///
template<typename Ty>
BX_CONSTEXPR_FUNC uint8_t countTrailingZeros(Ty _val);
/// Find first set.
///
template<typename Ty>
BX_CONSTEXPR_FUNC uint8_t findFirstSet(Ty _val);
/// Returns the next smallest integer base 2 logarithm of _a.
///
template<typename Ty>
BX_CONSTEXPR_FUNC uint8_t ceilLog2(Ty _a);
/// Returns the next biggest integer base 2 logarithm of _a.
///
template<typename Ty>
BX_CONSTEXPR_FUNC uint8_t floorLog2(Ty _a);
/// Returns the next smallest power of two value.
///
template<typename Ty>
BX_CONSTEXPR_FUNC Ty nextPow2(Ty _a);
/// Returns the square root of _a.
///
BX_CONST_FUNC float sqrt(float _a);
/// Returns reciprocal square root of _a.
///
BX_CONST_FUNC float rsqrt(float _a);
/// Returns the nearest integer not greater in magnitude than _a.
///
BX_CONSTEXPR_FUNC float trunc(float _a);
/// Returns the fractional (or decimal) part of _a, which is greater than or equal to 0
/// and less than 1.
///
BX_CONSTEXPR_FUNC float fract(float _a);
/// Returns result of negated multiply-sub operation -(_a * _b - _c) -> _c - _a * _b.
///
BX_CONSTEXPR_FUNC float nms(float _a, float _b, float _c);
/// Returns result of addition (_a + _b).
///
BX_CONSTEXPR_FUNC float add(float _a, float _b);
/// Returns result of subtracion (_a - _b).
///
BX_CONSTEXPR_FUNC float sub(float _a, float _b);
/// Returns result of multiply (_a * _b).
///
BX_CONSTEXPR_FUNC float mul(float _a, float _b);
/// Returns result of multiply and add (_a * _b + _c).
///
BX_CONSTEXPR_FUNC float mad(float _a, float _b, float _c);
/// Returns reciprocal of _a.
///
BX_CONSTEXPR_FUNC float rcp(float _a);
/// Returns reciprocal of _a. Avoids divide by zero.
///
BX_CONSTEXPR_FUNC float rcpSafe(float _a);
/// Returns the floating-point remainder of the division operation _a/_b.
///
BX_CONSTEXPR_FUNC float mod(float _a, float _b);
///
BX_CONSTEXPR_FUNC bool isEqual(float _a, float _b, float _epsilon);
///
BX_CONST_FUNC bool isEqual(const float* _a, const float* _b, uint32_t _num, float _epsilon);
///
BX_CONSTEXPR_FUNC float wrap(float _a, float _wrap);
///
BX_CONSTEXPR_FUNC float step(float _edge, float _a);
///
BX_CONSTEXPR_FUNC float pulse(float _a, float _start, float _end);
///
BX_CONSTEXPR_FUNC float smoothStep(float _a);
///
BX_CONST_FUNC float invSmoothStep(float _a);
///
BX_CONSTEXPR_FUNC float bias(float _time, float _bias);
///
BX_CONSTEXPR_FUNC float gain(float _time, float _gain);
///
BX_CONSTEXPR_FUNC float angleDiff(float _a, float _b);
/// Returns shortest distance linear interpolation between two angles.
///
BX_CONSTEXPR_FUNC float angleLerp(float _a, float _b, float _t);
///
template<typename Ty>
Ty load(const void* _ptr);
///
template<typename Ty>
void store(void* _ptr, const Ty& _a);
///
BX_CONSTEXPR_FUNC Vec3 round(const Vec3 _a);
///
BX_CONSTEXPR_FUNC Vec3 abs(const Vec3 _a);
///
BX_CONSTEXPR_FUNC Vec3 neg(const Vec3 _a);
///
BX_CONSTEXPR_FUNC Vec3 add(const Vec3 _a, const Vec3 _b);
///
BX_CONSTEXPR_FUNC Vec3 add(const Vec3 _a, float _b);
///
BX_CONSTEXPR_FUNC Vec3 sub(const Vec3 _a, const Vec3 _b);
///
BX_CONSTEXPR_FUNC Vec3 sub(const Vec3 _a, float _b);
///
BX_CONSTEXPR_FUNC Vec3 mul(const Vec3 _a, const Vec3 _b);
///
BX_CONSTEXPR_FUNC Vec3 mul(const Vec3 _a, float _b);
///
BX_CONSTEXPR_FUNC Vec3 div(const Vec3 _a, const Vec3 _b);
///
BX_CONSTEXPR_FUNC Vec3 divSafe(const Vec3 _a, const Vec3 _b);
///
BX_CONSTEXPR_FUNC Vec3 div(const Vec3 _a, float _b);
///
BX_CONSTEXPR_FUNC Vec3 divSafe(const Vec3 _a, float _b);
/// Returns result of negated multiply-sub operation -(_a * _b - _c) -> _c - _a * _b.
///
BX_CONSTEXPR_FUNC Vec3 nms(const Vec3 _a, const float _b, const Vec3 _c);
/// Returns result of negated multiply-sub operation -(_a * _b - _c) -> _c - _a * _b.
///
BX_CONSTEXPR_FUNC Vec3 nms(const Vec3 _a, const Vec3 _b, const Vec3 _c);
///
BX_CONSTEXPR_FUNC Vec3 mad(const Vec3 _a, const float _b, const Vec3 _c);
///
BX_CONSTEXPR_FUNC Vec3 mad(const Vec3 _a, const Vec3 _b, const Vec3 _c);
///
BX_CONSTEXPR_FUNC float dot(const Vec3 _a, const Vec3 _b);
///
BX_CONSTEXPR_FUNC Vec3 cross(const Vec3 _a, const Vec3 _b);
///
BX_CONST_FUNC float length(const Vec3 _a);
///
BX_CONST_FUNC float distanceSq(const Vec3 _a, const Vec3 _b);
///
BX_CONST_FUNC float distance(const Vec3 _a, const Vec3 _b);
///
BX_CONSTEXPR_FUNC Vec3 lerp(const Vec3 _a, const Vec3 _b, float _t);
///
BX_CONSTEXPR_FUNC Vec3 lerp(const Vec3 _a, const Vec3 _b, const Vec3 _t);
///
BX_CONST_FUNC Vec3 normalize(const Vec3 _a);
///
BX_CONSTEXPR_FUNC Vec3 min(const Vec3 _a, const Vec3 _b);
///
BX_CONSTEXPR_FUNC Vec3 max(const Vec3 _a, const Vec3 _b);
/// Returns component wise reciprocal of _a.
///
BX_CONSTEXPR_FUNC Vec3 rcp(const Vec3 _a);
/// Returns component wise reciprocal of _a.
///
BX_CONSTEXPR_FUNC Vec3 rcpSafe(const Vec3 _a);
///
BX_CONSTEXPR_FUNC bool isEqual(const Vec3 _a, const Vec3 _b, float _epsilon);
///
void calcTangentFrame(Vec3& _outT, Vec3& _outB, const Vec3 _n);
///
void calcTangentFrame(Vec3& _outT, Vec3& _outB, const Vec3 _n, float _angle);
///
BX_CONST_FUNC Vec3 fromLatLong(float _u, float _v);
///
void toLatLong(float* _outU, float* _outV, const Vec3 _dir);
///
BX_CONSTEXPR_FUNC Quaternion invert(const Quaternion _a);
///
BX_CONSTEXPR_FUNC Vec3 mulXyz(const Quaternion _a, const Quaternion _b);
///
BX_CONSTEXPR_FUNC Quaternion add(const Quaternion _a, const Quaternion _b);
///
BX_CONSTEXPR_FUNC Quaternion sub(const Quaternion _a, const Quaternion _b);
///
BX_CONSTEXPR_FUNC Quaternion mul(const Quaternion _a, float _b);
///
BX_CONSTEXPR_FUNC Quaternion mul(const Quaternion _a, const Quaternion _b);
///
BX_CONSTEXPR_FUNC Vec3 mul(const Vec3 _v, const Quaternion _q);
///
BX_CONSTEXPR_FUNC float dot(const Quaternion _a, const Quaternion _b);
///
BX_CONSTEXPR_FUNC Quaternion normalize(const Quaternion _a);
///
BX_CONSTEXPR_FUNC Quaternion lerp(const Quaternion _a, const Quaternion _b, float _t);
///
BX_CONST_FUNC Quaternion fromEuler(const Vec3 _euler);
///
BX_CONST_FUNC Vec3 toEuler(const Quaternion _a);
///
BX_CONST_FUNC Vec3 toXAxis(const Quaternion _a);
///
BX_CONST_FUNC Vec3 toYAxis(const Quaternion _a);
///
BX_CONST_FUNC Vec3 toZAxis(const Quaternion _a);
///
BX_CONST_FUNC Quaternion fromAxisAngle(const Vec3 _axis, float _angle);
///
void toAxisAngle(Vec3& _outAxis, float& _outAngle, const Quaternion _a);
///
BX_CONST_FUNC Quaternion rotateX(float _ax);
///
BX_CONST_FUNC Quaternion rotateY(float _ay);
///
BX_CONST_FUNC Quaternion rotateZ(float _az);
///
BX_CONSTEXPR_FUNC bool isEqual(const Quaternion _a, const Quaternion _b, float _epsilon);
///
void mtxIdentity(float* _result);
///
void mtxTranslate(float* _result, float _tx, float _ty, float _tz);
///
void mtxScale(float* _result, float _sx, float _sy, float _sz);
///
void mtxScale(float* _result, float _scale);
///
void mtxFromNormal(
float* _result
, const Vec3& _normal
, float _scale
, const Vec3& _pos
);
///
void mtxFromNormal(
float* _result
, const Vec3& _normal
, float _scale
, const Vec3& _pos
, float _angle
);
///
void mtxFromQuaternion(float* _result, const Quaternion& _rotation);
///
void mtxFromQuaternion(float* _result, const Quaternion& _rotation, const Vec3& _translation);
///
void mtxLookAt(
float* _result
, const Vec3& _eye
, const Vec3& _at
, const Vec3& _up = { 0.0f, 1.0f, 0.0f }
, Handedness::Enum _handedness = Handedness::Left
);
///
void mtxProj(
float* _result
, float _ut
, float _dt
, float _lt
, float _rt
, float _near
, float _far
, bool _homogeneousNdc
, Handedness::Enum _handedness = Handedness::Left
);
///
void mtxProj(
float* _result
, const float _fov[4]
, float _near
, float _far
, bool _homogeneousNdc
, Handedness::Enum _handedness = Handedness::Left
);
///
void mtxProj(
float* _result
, float _fovy
, float _aspect
, float _near
, float _far
, bool _homogeneousNdc
, Handedness::Enum _handedness = Handedness::Left
);
///
void mtxProjInf(
float* _result
, const float _fov[4]
, float _near
, bool _homogeneousNdc
, Handedness::Enum _handedness = Handedness::Left
, NearFar::Enum _nearFar = NearFar::Default
);
///
void mtxProjInf(
float* _result
, float _ut
, float _dt
, float _lt
, float _rt
, float _near
, bool _homogeneousNdc
, Handedness::Enum _handedness = Handedness::Left
, NearFar::Enum _nearFar = NearFar::Default
);
///
void mtxProjInf(
float* _result
, float _fovy
, float _aspect
, float _near
, bool _homogeneousNdc
, Handedness::Enum _handedness = Handedness::Left
, NearFar::Enum _nearFar = NearFar::Default
);
///
void mtxOrtho(
float* _result
, float _left
, float _right
, float _bottom
, float _top
, float _near
, float _far
, float _offset
, bool _homogeneousNdc
, Handedness::Enum _handedness = Handedness::Left
);
///
void mtxRotateX(float* _result, float _ax);
///
void mtxRotateY(float* _result, float _ay);
///
void mtxRotateZ(float* _result, float _az);
///
void mtxRotateXY(float* _result, float _ax, float _ay);
///
void mtxRotateXYZ(float* _result, float _ax, float _ay, float _az);
///
void mtxRotateZYX(float* _result, float _ax, float _ay, float _az);
///
void mtxSRT(
float* _result
, float _sx
, float _sy
, float _sz
, float _ax
, float _ay
, float _az
, float _tx
, float _ty
, float _tz
);
///
Vec3 mul(const Vec3& _vec, const float* _mat);
///
Vec3 mulXyz0(const Vec3& _vec, const float* _mat);
///
Vec3 mulH(const Vec3& _vec, const float* _mat);
///
void vec4MulMtx(float* _result, const float* _vec, const float* _mat);
///
void mtxMul(float* _result, const float* _a, const float* _b);
///
void mtxTranspose(float* _result, const float* _a);
///
void mtx3Inverse(float* _result, const float* _a);
///
void mtxInverse(float* _result, const float* _a);
///
void mtx3Cofactor(float* _result, const float* _a);
///
void mtxCofactor(float* _result, const float* _a);
///
Vec3 calcNormal(const Vec3& _va, const Vec3& _vb, const Vec3& _vc);
///
void calcPlane(Plane& _outPlane, const Vec3& _va, const Vec3& _vb, const Vec3& _vc);
///
void calcPlane(Plane& _outPlane, const Vec3& _normal, const Vec3& _pos);
///
BX_CONSTEXPR_FUNC float distance(const Plane& _plane, const Vec3& _pos);
///
BX_CONSTEXPR_FUNC bool isEqual(const Plane& _a, const Plane& _b, float _epsilon);
///
void calcLinearFit2D(float _result[2], const void* _points, uint32_t _stride, uint32_t _numPoints);
///
void calcLinearFit3D(float _result[3], const void* _points, uint32_t _stride, uint32_t _numPoints);
///
void rgbToHsv(float _hsv[3], const float _rgb[3]);
///
void hsvToRgb(float _rgb[3], const float _hsv[3]);
///
BX_CONST_FUNC float toLinear(float _a);
///
BX_CONST_FUNC float toGamma(float _a);
} // namespace bx
#include "inline/math.inl"
#endif // BX_MATH_H_HEADER_GUARD