Files
bgfx/src/renderer_webgpu.cpp
Raziel Alphadios c2bc5177b5 Add support for remaining unsupported ASTC formats (#2963)
* Add support for remaining unsupported ASTC formats
Add new ASTC formats into pixelformats example and ninja scripts
Rebuild ASTC textures

* Update idl and generate
Move comma in pixelformats

Co-authored-by: Raziel Alphadios <raziely@gmail.com>
2022-10-25 17:03:40 -07:00

5020 lines
152 KiB
C++

/*
* Copyright 2011-2019 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bgfx/blob/master/LICENSE
*/
#include "bgfx_p.h"
//#define DAWN_ENABLE_BACKEND_D3D12
#define DAWN_ENABLE_BACKEND_VULKAN
#if BGFX_CONFIG_RENDERER_WEBGPU
# include "renderer_webgpu.h"
# include "renderer.h"
# include "debug_renderdoc.h"
# include "emscripten.h"
# include "shader_spirv.h"
# if BX_PLATFORM_ANDROID
# define VK_USE_PLATFORM_ANDROID_KHR
# elif BX_PLATFORM_LINUX
# define VK_USE_PLATFORM_XLIB_KHR
# define VK_USE_PLATFORM_XCB_KHR
# elif BX_PLATFORM_WINDOWS
# define VK_USE_PLATFORM_WIN32_KHR
# elif BX_PLATFORM_OSX
# define VK_USE_PLATFORM_MACOS_MVK
# endif // BX_PLATFORM_*
# define VK_NO_STDINT_H
# define VK_NO_PROTOTYPES
# include <vulkan-local/vulkan.h>
# if BX_PLATFORM_EMSCRIPTEN
# include "emscripten.h"
# include "emscripten/html5_webgpu.h"
# else
# ifdef DAWN_ENABLE_BACKEND_D3D12
# include <dawn_native/D3D12Backend.h>
# endif // !BX_PLATFORM_EMSCRIPTEN
# ifdef DAWN_ENABLE_BACKEND_VULKAN
# include <dawn_native/VulkanBackend.h>
# endif // DAWN_ENABLE_BACKEND_VULKAN
# include <dawn_native/DawnNative.h>
# include <dawn/dawn_wsi.h>
# include <dawn/dawn_proc.h>
# endif // !BX_PLATFORM_EMSCRIPTEN
namespace bgfx { namespace webgpu
{
// TODO (hugoam) cleanup
template <class T>
T defaultDescriptor() { return T(); }
template <> wgpu::BlendComponent defaultDescriptor() { return { wgpu::BlendOperation::Add, wgpu::BlendFactor::One, wgpu::BlendFactor::Zero }; }
template <> wgpu::ColorTargetState defaultDescriptor() { return { NULL, wgpu::TextureFormat::RGBA8Unorm, NULL, wgpu::ColorWriteMask::All }; }
template <> wgpu::StencilFaceState defaultDescriptor() { return { wgpu::CompareFunction::Always, wgpu::StencilOperation::Keep, wgpu::StencilOperation::Keep, wgpu::StencilOperation::Keep }; }
template <> wgpu::VertexState defaultDescriptor() { return { NULL, {}, "main", 0, NULL }; }
template <> wgpu::FragmentState defaultDescriptor() { return { NULL, {}, "main", 0, NULL }; }
template <> wgpu::VertexBufferLayout defaultDescriptor() { return { 0, wgpu::InputStepMode::Vertex, 0, NULL }; }
template <> wgpu::VertexAttribute defaultDescriptor() { return { wgpu::VertexFormat::Float, 0, 0 }; }
template <> wgpu::PrimitiveState defaultDescriptor() { return { NULL, wgpu::PrimitiveTopology::TriangleList, wgpu::IndexFormat::Undefined, wgpu::FrontFace::CCW, wgpu::CullMode::None }; }
template <> wgpu::DepthStencilState defaultDescriptor() { return { NULL, wgpu::TextureFormat::Depth24PlusStencil8, false, wgpu::CompareFunction::Always, defaultDescriptor<wgpu::StencilFaceState>(), defaultDescriptor<wgpu::StencilFaceState>(), 0xff, 0xff }; }
template <> wgpu::PipelineLayoutDescriptor defaultDescriptor() { return { NULL, "", 0, NULL }; }
template <> wgpu::TextureViewDescriptor defaultDescriptor() { return {}; }
template <> wgpu::RenderPassColorAttachment defaultDescriptor() { return { {}, {}, wgpu::LoadOp::Clear, wgpu::StoreOp::Store, { 0.0f, 0.0f, 0.0f, 0.0f } }; }
template <> wgpu::RenderPassDepthStencilAttachment defaultDescriptor() { return { {}, wgpu::LoadOp::Clear, wgpu::StoreOp::Store, 1.0f, false, wgpu::LoadOp::Clear, wgpu::StoreOp::Store, 0, false }; }
RenderPassDescriptor::RenderPassDescriptor()
{
depthStencilAttachment = defaultDescriptor<wgpu::RenderPassDepthStencilAttachment>();
for(uint32_t i = 0; i < kMaxColorAttachments; ++i)
{
colorAttachments[i] = defaultDescriptor<wgpu::RenderPassColorAttachment>();
}
desc = defaultDescriptor<wgpu::RenderPassDescriptor>();
//desc.colorAttachmentCount = colorAttachmentCount;
desc.colorAttachments = colorAttachments;
desc.colorAttachmentCount = 1; // TODO (hugoam) set it properly everywhere
}
VertexStateDescriptor::VertexStateDescriptor()
{
for(uint32_t i = 0; i < kMaxVertexInputs; ++i)
{
buffers[i] = defaultDescriptor<wgpu::VertexBufferLayout>();
}
for (uint32_t i = 0; i < kMaxVertexAttributes; ++i)
{
attributes[i] = defaultDescriptor<wgpu::VertexAttribute>();
}
buffers[0].attributes = &attributes[0];
//buffers[0].attributeCount = numAttributes;
desc = defaultDescriptor<wgpu::VertexState>();
desc.buffers = buffers;
//desc.vertexBufferCount = numVertexBuffers;
}
RenderPipelineDescriptor::RenderPipelineDescriptor()
{
//vertex = defaultDescriptor<wgpu::VertexState>();
fragment = defaultDescriptor<wgpu::FragmentState>();
depthStencil = defaultDescriptor<wgpu::DepthStencilState>();
for(uint32_t i = 0; i < kMaxColorAttachments; ++i)
{
targets[i] = defaultDescriptor<wgpu::ColorTargetState>();
}
desc = defaultDescriptor<wgpu::RenderPipelineDescriptor2>();
desc.primitive.topology = wgpu::PrimitiveTopology::TriangleList;
desc.multisample.count = 1;
fragment.targetCount = 1;
fragment.targets = targets;
//wgpu::VertexStateDescriptor inputState = inputState.descriptor();
desc.vertex = defaultDescriptor<wgpu::VertexState>();
desc.fragment = NULL;
//desc.vertexState = &inputState;
desc.primitive = defaultDescriptor<wgpu::PrimitiveState>();
desc.depthStencil = NULL;
}
// TODO (hugoam) cleanup (end)
static char s_viewName[BGFX_CONFIG_MAX_VIEWS][BGFX_CONFIG_MAX_VIEW_NAME];
inline void setViewType(ViewId _view, const bx::StringView _str)
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION || BGFX_CONFIG_PROFILER) )
{
bx::memCopy(&s_viewName[_view][3], _str.getPtr(), _str.getLength() );
}
}
struct PrimInfo
{
wgpu::PrimitiveTopology m_type;
uint32_t m_min;
uint32_t m_div;
uint32_t m_sub;
};
static const PrimInfo s_primInfo[] =
{
{ wgpu::PrimitiveTopology::TriangleList, 3, 3, 0 },
{ wgpu::PrimitiveTopology::TriangleStrip, 3, 1, 2 },
{ wgpu::PrimitiveTopology::LineList, 2, 2, 0 },
{ wgpu::PrimitiveTopology::LineStrip, 2, 1, 1 },
{ wgpu::PrimitiveTopology::PointList, 1, 1, 0 },
};
BX_STATIC_ASSERT(Topology::Count == BX_COUNTOF(s_primInfo) );
static const wgpu::VertexFormat s_attribType[][4][2] =
{
{ // Uint8
{ wgpu::VertexFormat::Uint8x2, wgpu::VertexFormat::Unorm8x2 },
{ wgpu::VertexFormat::Uint8x2, wgpu::VertexFormat::Unorm8x2 },
{ wgpu::VertexFormat::Uint8x4, wgpu::VertexFormat::Unorm8x4 },
{ wgpu::VertexFormat::Uint8x4, wgpu::VertexFormat::Unorm8x4 },
},
{ // Uint10
{ wgpu::VertexFormat::Uint16x2, wgpu::VertexFormat::Unorm16x2 },
{ wgpu::VertexFormat::Uint16x2, wgpu::VertexFormat::Unorm16x2 },
{ wgpu::VertexFormat::Uint16x4, wgpu::VertexFormat::Unorm16x4 },
{ wgpu::VertexFormat::Uint16x4, wgpu::VertexFormat::Unorm16x4 },
},
{ // Int16
{ wgpu::VertexFormat::Sint16x2, wgpu::VertexFormat::Snorm16x2 },
{ wgpu::VertexFormat::Sint16x2, wgpu::VertexFormat::Snorm16x2 },
{ wgpu::VertexFormat::Sint16x4, wgpu::VertexFormat::Snorm16x4 },
{ wgpu::VertexFormat::Sint16x4, wgpu::VertexFormat::Snorm16x4 },
},
{ // Half
{ wgpu::VertexFormat::Float16x2, wgpu::VertexFormat::Float16x2 },
{ wgpu::VertexFormat::Float16x2, wgpu::VertexFormat::Float16x2 },
{ wgpu::VertexFormat::Float16x4, wgpu::VertexFormat::Float16x4 },
{ wgpu::VertexFormat::Float16x4, wgpu::VertexFormat::Float16x4 },
},
{ // Float
{ wgpu::VertexFormat::Float32, wgpu::VertexFormat::Float32 },
{ wgpu::VertexFormat::Float32x2, wgpu::VertexFormat::Float32x2 },
{ wgpu::VertexFormat::Float32x3, wgpu::VertexFormat::Float32x3 },
{ wgpu::VertexFormat::Float32x4, wgpu::VertexFormat::Float32x4 },
},
};
BX_STATIC_ASSERT(AttribType::Count == BX_COUNTOF(s_attribType) );
static const wgpu::CullMode s_cullMode[] =
{
wgpu::CullMode::None,
wgpu::CullMode::Front,
wgpu::CullMode::Back,
wgpu::CullMode::None,
};
static const wgpu::BlendFactor s_blendFactor[][2] =
{
{ wgpu::BlendFactor(0), wgpu::BlendFactor(0) }, // ignored
{ wgpu::BlendFactor::Zero, wgpu::BlendFactor::Zero }, // ZERO
{ wgpu::BlendFactor::One, wgpu::BlendFactor::One }, // ONE
{ wgpu::BlendFactor::SrcColor, wgpu::BlendFactor::SrcAlpha }, // SRC_COLOR
{ wgpu::BlendFactor::OneMinusSrcColor, wgpu::BlendFactor::OneMinusSrcAlpha }, // INV_SRC_COLOR
{ wgpu::BlendFactor::SrcAlpha, wgpu::BlendFactor::SrcAlpha }, // SRC_ALPHA
{ wgpu::BlendFactor::OneMinusSrcAlpha, wgpu::BlendFactor::OneMinusSrcAlpha }, // INV_SRC_ALPHA
{ wgpu::BlendFactor::DstAlpha, wgpu::BlendFactor::DstAlpha }, // DST_ALPHA
{ wgpu::BlendFactor::OneMinusDstAlpha, wgpu::BlendFactor::OneMinusDstAlpha }, // INV_DST_ALPHA
{ wgpu::BlendFactor::DstColor, wgpu::BlendFactor::DstAlpha }, // DST_COLOR
{ wgpu::BlendFactor::OneMinusDstColor, wgpu::BlendFactor::OneMinusDstAlpha }, // INV_DST_COLOR
{ wgpu::BlendFactor::SrcAlphaSaturated, wgpu::BlendFactor::One }, // SRC_ALPHA_SAT
{ wgpu::BlendFactor::BlendColor, wgpu::BlendFactor::BlendColor }, // FACTOR
{ wgpu::BlendFactor::OneMinusBlendColor, wgpu::BlendFactor::OneMinusBlendColor }, // INV_FACTOR
};
static const wgpu::BlendOperation s_blendEquation[] =
{
wgpu::BlendOperation::Add,
wgpu::BlendOperation::Subtract,
wgpu::BlendOperation::ReverseSubtract,
wgpu::BlendOperation::Min,
wgpu::BlendOperation::Max,
};
static const wgpu::CompareFunction s_cmpFunc[] =
{
wgpu::CompareFunction::Always, // ignored
wgpu::CompareFunction::Less,
wgpu::CompareFunction::LessEqual,
wgpu::CompareFunction::Equal,
wgpu::CompareFunction::GreaterEqual,
wgpu::CompareFunction::Greater,
wgpu::CompareFunction::NotEqual,
wgpu::CompareFunction::Never,
wgpu::CompareFunction::Always,
};
static const wgpu::StencilOperation s_stencilOp[] =
{
wgpu::StencilOperation::Zero,
wgpu::StencilOperation::Keep,
wgpu::StencilOperation::Replace,
wgpu::StencilOperation::IncrementWrap,
wgpu::StencilOperation::IncrementClamp,
wgpu::StencilOperation::DecrementWrap,
wgpu::StencilOperation::DecrementClamp,
wgpu::StencilOperation::Invert,
};
static const wgpu::AddressMode s_textureAddress[] =
{
wgpu::AddressMode::Repeat,
wgpu::AddressMode::MirrorRepeat,
wgpu::AddressMode::ClampToEdge,
wgpu::AddressMode(0), // Border ? ClampToZero ?
};
static const wgpu::FilterMode s_textureFilterMinMag[] =
{
wgpu::FilterMode::Linear,
wgpu::FilterMode::Nearest,
wgpu::FilterMode::Linear,
};
static const wgpu::FilterMode s_textureFilterMip[] =
{
wgpu::FilterMode::Linear,
wgpu::FilterMode::Nearest,
};
struct TextureFormatInfo
{
wgpu::TextureFormat m_fmt;
wgpu::TextureFormat m_fmtSrgb;
};
static TextureFormatInfo s_textureFormat[] =
{
{ wgpu::TextureFormat::BC1RGBAUnorm, wgpu::TextureFormat::BC1RGBAUnormSrgb }, // BC1
{ wgpu::TextureFormat::BC2RGBAUnorm, wgpu::TextureFormat::BC2RGBAUnormSrgb }, // BC2
{ wgpu::TextureFormat::BC3RGBAUnorm, wgpu::TextureFormat::BC3RGBAUnormSrgb }, // BC3
{ wgpu::TextureFormat::BC4RUnorm, wgpu::TextureFormat::Undefined }, // BC4 // BC4RSnorm ??
{ wgpu::TextureFormat::BC5RGUnorm, wgpu::TextureFormat::Undefined }, // BC5 // BC5RGSnorm ??
{ wgpu::TextureFormat::BC6HRGBUfloat, wgpu::TextureFormat::Undefined }, // BC6H // BC6HRGBSfloat ??
{ wgpu::TextureFormat::BC7RGBAUnorm, wgpu::TextureFormat::BC7RGBAUnormSrgb }, // BC7
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ETC1
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ETC2
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ETC2A
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ETC2A1
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // PTC12
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // PTC14
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // PTC12A
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // PTC14A
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // PTC22
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // PTC24
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ATC
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ATCE
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ATCI
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ASTC4x4
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ASTC5x4
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ASTC5x5
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ASTC6x5
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ASTC6x6
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ASTC8x5
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ASTC8x6
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ASTC8x8
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ASTC10x5
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ASTC10x6
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ASTC10x8
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ASTC10x10
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ASTC12x10
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // ASTC12x12
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // Unknown
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // R1
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // A8
{ wgpu::TextureFormat::R8Unorm, wgpu::TextureFormat::Undefined }, // R8
{ wgpu::TextureFormat::R8Sint, wgpu::TextureFormat::Undefined }, // R8I
{ wgpu::TextureFormat::R8Uint, wgpu::TextureFormat::Undefined }, // R8U
{ wgpu::TextureFormat::R8Snorm, wgpu::TextureFormat::Undefined }, // R8S
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // R16
{ wgpu::TextureFormat::R16Sint, wgpu::TextureFormat::Undefined }, // R16I
{ wgpu::TextureFormat::R16Uint, wgpu::TextureFormat::Undefined }, // R16U
{ wgpu::TextureFormat::R16Float, wgpu::TextureFormat::Undefined }, // R16F
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // R16S
{ wgpu::TextureFormat::R32Sint, wgpu::TextureFormat::Undefined }, // R32I
{ wgpu::TextureFormat::R32Uint, wgpu::TextureFormat::Undefined }, // R32U
{ wgpu::TextureFormat::R32Float, wgpu::TextureFormat::Undefined }, // R32F
{ wgpu::TextureFormat::RG8Unorm, wgpu::TextureFormat::Undefined }, // RG8
{ wgpu::TextureFormat::RG8Sint, wgpu::TextureFormat::Undefined }, // RG8I
{ wgpu::TextureFormat::RG8Uint, wgpu::TextureFormat::Undefined }, // RG8U
{ wgpu::TextureFormat::RG8Snorm, wgpu::TextureFormat::Undefined }, // RG8S
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // RG16
{ wgpu::TextureFormat::RG16Sint, wgpu::TextureFormat::Undefined }, // RG16I
{ wgpu::TextureFormat::RG16Uint, wgpu::TextureFormat::Undefined }, // RG16U
{ wgpu::TextureFormat::RG16Float, wgpu::TextureFormat::Undefined }, // RG16F
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // RG16S
{ wgpu::TextureFormat::RG32Sint, wgpu::TextureFormat::Undefined }, // RG32I
{ wgpu::TextureFormat::RG32Uint, wgpu::TextureFormat::Undefined }, // RG32U
{ wgpu::TextureFormat::RG32Float, wgpu::TextureFormat::Undefined }, // RG32F
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // RGB8
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // RGB8I
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // RGB8U
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // RGB8S
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // RGB9E5F
{ wgpu::TextureFormat::BGRA8Unorm, wgpu::TextureFormat::BGRA8UnormSrgb }, // BGRA8
{ wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::RGBA8UnormSrgb }, // RGBA8
{ wgpu::TextureFormat::RGBA8Sint, wgpu::TextureFormat::Undefined }, // RGBA8I
{ wgpu::TextureFormat::RGBA8Uint, wgpu::TextureFormat::Undefined }, // RGBA8U
{ wgpu::TextureFormat::RGBA8Snorm, wgpu::TextureFormat::Undefined }, // RGBA8S
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // RGBA16
{ wgpu::TextureFormat::RGBA16Sint, wgpu::TextureFormat::Undefined }, // RGBA16I
{ wgpu::TextureFormat::RGBA16Uint, wgpu::TextureFormat::Undefined }, // RGBA16U
{ wgpu::TextureFormat::RGBA16Float, wgpu::TextureFormat::Undefined }, // RGBA16F
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // RGBA16S
{ wgpu::TextureFormat::RGBA32Sint, wgpu::TextureFormat::Undefined }, // RGBA32I
{ wgpu::TextureFormat::RGBA32Uint, wgpu::TextureFormat::Undefined }, // RGBA32U
{ wgpu::TextureFormat::RGBA32Float, wgpu::TextureFormat::Undefined }, // RGBA32F
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // B5G6R5
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // R5G6B5
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // BGRA4
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // RGBA4
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // BGR5A1
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // RGB5A1
{ wgpu::TextureFormat::RGB10A2Unorm, wgpu::TextureFormat::Undefined }, // RGB10A2
{ wgpu::TextureFormat::RG11B10Ufloat, wgpu::TextureFormat::Undefined }, // RG11B10F
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // UnknownDepth
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // D16
{ wgpu::TextureFormat::Depth24Plus, wgpu::TextureFormat::Undefined }, // D24
{ wgpu::TextureFormat::Depth24PlusStencil8, wgpu::TextureFormat::Undefined }, // D24S8
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // D32
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // D16F
{ wgpu::TextureFormat::Undefined, wgpu::TextureFormat::Undefined }, // D24F
{ wgpu::TextureFormat::Depth32Float, wgpu::TextureFormat::Undefined }, // D32F
{ wgpu::TextureFormat::Stencil8, wgpu::TextureFormat::Undefined }, // D0S8
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormat));
int32_t s_msaa[] =
{
1,
2,
4,
8,
16,
};
struct RendererContextWgpu;
static RendererContextWgpu* s_renderWgpu;
static bool s_ignoreError = false;
#if !BX_PLATFORM_EMSCRIPTEN
DawnSwapChainImplementation(*createSwapChain)(wgpu::Device device, void* nwh);
# if defined(DAWN_ENABLE_BACKEND_D3D12)
DawnSwapChainImplementation CreateSwapChainD3D12(wgpu::Device device, void* nwh)
{
HWND win32Window = (HWND)nwh;
return dawn_native::d3d12::CreateNativeSwapChainImpl(device.Get(), win32Window);
}
# endif // defined(DAWN_ENABLE_BACKEND_D3D12)
# if defined(DAWN_ENABLE_BACKEND_VULKAN)
DawnSwapChainImplementation CreateSwapChainVulkan(wgpu::Device device, void* nwh)
{
VkInstance instance = dawn_native::vulkan::GetInstance(device.Get());
PFN_vkCreateWin32SurfaceKHR vkCreateWin32SurfaceKHR = (PFN_vkCreateWin32SurfaceKHR)dawn_native::vulkan::GetInstanceProcAddr(device.Get(), "vkCreateWin32SurfaceKHR");
VkSurfaceKHR surface;
# if BX_PLATFORM_WINDOWS
// Copied from renderer_vk.cpp -> needs refactor
{
VkWin32SurfaceCreateInfoKHR sci;
sci.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;
sci.pNext = NULL;
sci.flags = 0;
sci.hinstance = (HINSTANCE)GetModuleHandle(NULL);
sci.hwnd = (HWND)nwh;
VkResult result = vkCreateWin32SurfaceKHR(instance, &sci, NULL, &surface);
}
# endif // BX_PLATFORM_WINDOWS
return dawn_native::vulkan::CreateNativeSwapChainImpl(device.Get(), surface);
}
# endif // defined(DAWN_ENABLE_BACKEND_VULKAN)
#endif // !BX_PLATFORM_EMSCRIPTEN
struct RendererContextWgpu : public RendererContextI
{
RendererContextWgpu()
: m_frameIndex(0)
, m_numWindows(0)
, m_rtMsaa(false)
, m_capture(NULL)
, m_captureSize(0)
{
bx::memSet(&m_windows, 0xff, sizeof(m_windows) );
}
~RendererContextWgpu()
{
}
bool init(const Init& _init)
{
BX_UNUSED(_init);
BX_TRACE("Init.");
if (_init.debug
|| _init.profile)
{
m_renderDocDll = loadRenderDoc();
}
setGraphicsDebuggerPresent(NULL != m_renderDocDll);
m_fbh.idx = kInvalidHandle;
bx::memSet(m_uniforms, 0, sizeof(m_uniforms) );
bx::memSet(&m_resolution, 0, sizeof(m_resolution) );
#if !BX_PLATFORM_EMSCRIPTEN
// Default to D3D12, Metal, Vulkan, OpenGL in that order as D3D12 and Metal are the preferred on
// their respective platforms, and Vulkan is preferred to OpenGL
# if defined(DAWN_ENABLE_BACKEND_D3D12)
static wgpu::BackendType backendType = wgpu::BackendType::D3D12;
# elif defined(DAWN_ENABLE_BACKEND_METAL)
static wgpu::BackendType backendType = wgpu::BackendType::Metal;
# elif defined(DAWN_ENABLE_BACKEND_OPENGL)
static wgpu::BackendType backendType = wgpu::BackendType::OpenGL;
# elif defined(DAWN_ENABLE_BACKEND_VULKAN)
static wgpu::BackendType backendType = wgpu::BackendType::Vulkan;
# else
# error "Unknown platform."
# endif // defined(DAWN_ENABLE_BACKEND_*)
if (BX_ENABLED(BGFX_CONFIG_DEBUG))
{
m_instance.EnableBackendValidation(true);
}
m_instance.DiscoverDefaultAdapters();
dawn_native::Adapter backendAdapter;
std::vector<dawn_native::Adapter> adapters = m_instance.GetAdapters();
for (dawn_native::Adapter& adapter : adapters)
{
wgpu::AdapterProperties properties;
adapter.GetProperties(&properties);
if (properties.backendType == backendType)
{
backendAdapter = adapter;
break;
}
}
//BX_ASSERT(adapterIt != adapters.end());
dawn_native::DeviceDescriptor desc;
# if defined(DAWN_ENABLE_BACKEND_D3D12)
desc.forceEnabledToggles.push_back("use_dxc");
# endif
desc.forceDisabledToggles.push_back("disallow_unsafe_apis");
WGPUDevice backendDevice = backendAdapter.CreateDevice(&desc);
DawnProcTable backendProcs = dawn_native::GetProcs();
using CreateSwapChain = DawnSwapChainImplementation (*)(wgpu::Device device, void* nwh);
# if defined(DAWN_ENABLE_BACKEND_D3D12)
createSwapChain = CreateSwapChainD3D12;
# elif defined(DAWN_ENABLE_BACKEND_METAL)
createSwapChain = CreateSwapChainMetal;
# elif defined(DAWN_ENABLE_BACKEND_NULL)
createSwapChain = CreateSwapChainNull;
# elif defined(DAWN_ENABLE_BACKEND_OPENGL)
createSwapChain = CreateSwapChainOpenGL;
# elif defined(DAWN_ENABLE_BACKEND_VULKAN)
createSwapChain = CreateSwapChainVulkan;
# endif // defined(DAWN_ENABLE_BACKEND_*)
// Choose whether to use the backend procs and devices directly, or set up the wire.
WGPUDevice cDevice = backendDevice;
DawnProcTable procs = backendProcs;
dawnProcSetProcs(&procs);
m_device = wgpu::Device::Acquire(cDevice);
#else
m_device = wgpu::Device(emscripten_webgpu_get_device());
#endif // !BX_PLATFORM_EMSCRIPTEN
auto PrintDeviceError = [](WGPUErrorType errorType, const char* message, void*) {
BX_UNUSED(errorType);
if (s_ignoreError)
{
BX_TRACE("Device error: %s", message);
}
else
{
BX_ASSERT(false, "Device error: %s", message);
}
s_ignoreError = false;
};
if (!m_device)
{
BX_WARN(!m_device, "Unable to create WebGPU device.");
return false;
}
m_device.SetUncapturedErrorCallback(PrintDeviceError, NULL);
bool success = m_mainFrameBuffer.create(
0
, g_platformData.nwh
, _init.resolution.width
, _init.resolution.height
, TextureFormat::Unknown
, TextureFormat::UnknownDepth
);
m_numWindows = 1;
if (!success)
{
return false;
}
m_queue = m_device.GetQueue();
m_cmd.init(m_queue);
//BGFX_FATAL(NULL != m_cmd.m_commandQueue, Fatal::UnableToInitialize, "Unable to create Metal device.");
for (uint8_t ii = 0; ii < BGFX_CONFIG_MAX_FRAME_LATENCY; ++ii)
{
BX_TRACE("Create scratch buffer %d", ii);
m_scratchBuffers[ii].create(BGFX_CONFIG_MAX_DRAW_CALLS * 128);
m_bindStateCache[ii].create(); // (1024);
}
for (uint8_t ii = 0; ii < WEBGPU_NUM_UNIFORM_BUFFERS; ++ii)
{
bool mapped = true; // ii == WEBGPU_NUM_UNIFORM_BUFFERS - 1;
m_uniformBuffers[ii].create(BGFX_CONFIG_MAX_DRAW_CALLS * 128, mapped);
}
g_caps.supported |= (0
| BGFX_CAPS_ALPHA_TO_COVERAGE
| BGFX_CAPS_BLEND_INDEPENDENT
| BGFX_CAPS_FRAGMENT_DEPTH
| BGFX_CAPS_INDEX32
| BGFX_CAPS_INSTANCING
// | BGFX_CAPS_OCCLUSION_QUERY
| BGFX_CAPS_SWAP_CHAIN
| BGFX_CAPS_TEXTURE_2D_ARRAY
| BGFX_CAPS_TEXTURE_3D
| BGFX_CAPS_TEXTURE_BLIT
| BGFX_CAPS_TEXTURE_COMPARE_ALL
| BGFX_CAPS_TEXTURE_COMPARE_LEQUAL
| BGFX_CAPS_TEXTURE_READ_BACK
| BGFX_CAPS_VERTEX_ATTRIB_HALF
| BGFX_CAPS_VERTEX_ATTRIB_UINT10
| BGFX_CAPS_COMPUTE
);
g_caps.limits.maxTextureSize = 8192;
g_caps.limits.maxFBAttachments = 4;
g_caps.supported |= BGFX_CAPS_TEXTURE_CUBE_ARRAY;
g_caps.supported |= BGFX_CAPS_DRAW_INDIRECT;
g_caps.limits.maxTextureLayers = 2048;
g_caps.limits.maxVertexStreams = BGFX_CONFIG_MAX_VERTEX_STREAMS;
// Maximum number of entries in the buffer argument table, per graphics or compute function are 31.
// It is decremented by 1 because 1 entry is used for uniforms.
g_caps.limits.maxComputeBindings = bx::uint32_min(30, BGFX_MAX_COMPUTE_BINDINGS);
for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii)
{
uint16_t support = 0;
support |= wgpu::TextureFormat::Undefined != s_textureFormat[ii].m_fmt
? BGFX_CAPS_FORMAT_TEXTURE_2D
| BGFX_CAPS_FORMAT_TEXTURE_3D
| BGFX_CAPS_FORMAT_TEXTURE_CUBE
| BGFX_CAPS_FORMAT_TEXTURE_VERTEX
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
support |= wgpu::TextureFormat::Undefined != s_textureFormat[ii].m_fmtSrgb
? BGFX_CAPS_FORMAT_TEXTURE_2D_SRGB
| BGFX_CAPS_FORMAT_TEXTURE_3D_SRGB
| BGFX_CAPS_FORMAT_TEXTURE_CUBE_SRGB
| BGFX_CAPS_FORMAT_TEXTURE_VERTEX
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
if (!bimg::isCompressed(bimg::TextureFormat::Enum(ii) ) )
{
support |= 0
| BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER
// | BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA
;
}
g_caps.formats[ii] = support;
}
g_caps.formats[TextureFormat::A8 ] &= ~(BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER | BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA);
g_caps.formats[TextureFormat::RG32I ] &= ~(BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA);
g_caps.formats[TextureFormat::RG32U ] &= ~(BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA);
g_caps.formats[TextureFormat::RGBA32I] &= ~(BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA);
g_caps.formats[TextureFormat::RGBA32U] &= ~(BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA);
g_caps.formats[TextureFormat::ETC2 ] =
g_caps.formats[TextureFormat::ETC2A ] =
g_caps.formats[TextureFormat::ETC2A1] =
g_caps.formats[TextureFormat::PTC12 ] =
g_caps.formats[TextureFormat::PTC14 ] =
g_caps.formats[TextureFormat::PTC12A] =
g_caps.formats[TextureFormat::PTC14A] =
g_caps.formats[TextureFormat::B5G6R5] =
g_caps.formats[TextureFormat::R5G6B5] =
g_caps.formats[TextureFormat::BGRA4 ] =
g_caps.formats[TextureFormat::RGBA4 ] =
g_caps.formats[TextureFormat::BGR5A1] =
g_caps.formats[TextureFormat::RGB5A1] = BGFX_CAPS_FORMAT_TEXTURE_NONE;
g_caps.formats[TextureFormat::RGB9E5F] &= ~(BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER | BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA);
g_caps.formats[TextureFormat::RG11B10F] &= ~(BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER | BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA);
// disable compressed formats
for (uint32_t ii = 0; ii < TextureFormat::Unknown; ++ii)
{
s_textureFormat[ii].m_fmt = wgpu::TextureFormat::Undefined;
}
for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii)
{
if (BGFX_CAPS_FORMAT_TEXTURE_NONE == g_caps.formats[ii])
{
s_textureFormat[ii].m_fmt = wgpu::TextureFormat::Undefined;
s_textureFormat[ii].m_fmtSrgb = wgpu::TextureFormat::Undefined;
}
}
for (uint32_t ii = 1, last = 0; ii < BX_COUNTOF(s_msaa); ++ii)
{
// TODO (hugoam)
//const int32_t sampleCount = 1; //1<<ii;
//if (m_device.supportsTextureSampleCount(sampleCount) )
//{
// s_msaa[ii] = sampleCount;
// last = ii;
//}
//else
{
s_msaa[ii] = s_msaa[last];
}
}
// Init reserved part of view name.
for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii)
{
bx::snprintf(s_viewName[ii], BGFX_CONFIG_MAX_VIEW_NAME_RESERVED+1, "%3d ", ii);
}
m_gpuTimer.init();
g_internalData.context = &m_device;
return true;
}
void shutdown()
{
m_gpuTimer.shutdown();
m_pipelineStateCache.invalidate();
for (uint32_t ii = 0; ii < BX_COUNTOF(m_shaders); ++ii)
{
m_shaders[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_textures); ++ii)
{
m_textures[ii].destroy();
}
captureFinish();
m_mainFrameBuffer.destroy();
for (uint32_t ii = 0; ii < BX_COUNTOF(m_scratchBuffers); ++ii)
{
m_scratchBuffers[ii].destroy();
}
m_cmd.shutdown();
}
RendererType::Enum getRendererType() const override
{
return RendererType::WebGPU;
}
const char* getRendererName() const override
{
return BGFX_RENDERER_WEBGPU_NAME;
}
void createIndexBuffer(IndexBufferHandle _handle, const Memory* _mem, uint16_t _flags) override
{
m_indexBuffers[_handle.idx].create(_mem->size, _mem->data, _flags);
}
void destroyIndexBuffer(IndexBufferHandle _handle) override
{
m_indexBuffers[_handle.idx].destroy();
}
void createVertexLayout(VertexLayoutHandle _handle, const VertexLayout& _decl) override
{
VertexLayout& decl = m_vertexDecls[_handle.idx];
bx::memCopy(&decl, &_decl, sizeof(VertexLayout) );
dump(decl);
}
void destroyVertexLayout(VertexLayoutHandle /*_handle*/) override
{
}
void createVertexBuffer(VertexBufferHandle _handle, const Memory* _mem, VertexLayoutHandle _declHandle, uint16_t _flags) override
{
m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _declHandle, _flags);
}
void destroyVertexBuffer(VertexBufferHandle _handle) override
{
m_vertexBuffers[_handle.idx].destroy();
}
void createDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size, uint16_t _flags) override
{
m_indexBuffers[_handle.idx].create(_size, NULL, _flags);
}
void updateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, const Memory* _mem) override
{
m_indexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void destroyDynamicIndexBuffer(IndexBufferHandle _handle) override
{
m_indexBuffers[_handle.idx].destroy();
}
void createDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size, uint16_t _flags) override
{
VertexLayoutHandle decl = BGFX_INVALID_HANDLE;
m_vertexBuffers[_handle.idx].create(_size, NULL, decl, _flags);
}
void updateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, const Memory* _mem) override
{
m_vertexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void destroyDynamicVertexBuffer(VertexBufferHandle _handle) override
{
m_vertexBuffers[_handle.idx].destroy();
}
void createShader(ShaderHandle _handle, const Memory* _mem) override
{
m_shaders[_handle.idx].create(_handle, _mem);
}
void destroyShader(ShaderHandle _handle) override
{
m_shaders[_handle.idx].destroy();
}
void createProgram(ProgramHandle _handle, ShaderHandle _vsh, ShaderHandle _fsh) override
{
m_program[_handle.idx].create(&m_shaders[_vsh.idx], isValid(_fsh) ? &m_shaders[_fsh.idx] : NULL);
}
void destroyProgram(ProgramHandle _handle) override
{
m_program[_handle.idx].destroy();
}
void* createTexture(TextureHandle _handle, const Memory* _mem, uint64_t _flags, uint8_t _skip) override
{
m_textures[_handle.idx].create(_handle, _mem, _flags, _skip);
return NULL;
}
void updateTextureBegin(TextureHandle /*_handle*/, uint8_t /*_side*/, uint8_t /*_mip*/) override
{
}
void updateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem) override
{
m_textures[_handle.idx].update(_side, _mip, _rect, _z, _depth, _pitch, _mem);
}
void updateTextureEnd() override
{
}
void readback(ReadbackWgpu& readback, const TextureWgpu& texture, void* _data)
{
m_cmd.kick(false, true);
m_cmd.beginRender();
if (readback.m_mapped)
return;
BX_ASSERT(readback.m_mip<texture.m_numMips,"Invalid mip: %d num mips:", readback.m_mip,texture.m_numMips);
uint32_t srcWidth = bx::uint32_max(1, texture.m_width >> readback.m_mip);
uint32_t srcHeight = bx::uint32_max(1, texture.m_height >> readback.m_mip);
const uint32_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(texture.m_textureFormat));
const uint32_t pitch = srcWidth * bpp / 8;
const uint32_t dstpitch = bx::strideAlign(pitch, kMinBufferOffsetAlignment);
const uint32_t size = dstpitch * srcHeight;
// TODO move inside ReadbackWgpu::create
if (!readback.m_buffer)
{
wgpu::BufferDescriptor desc;
desc.size = size;
desc.usage = wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::MapRead;
readback.m_buffer = m_device.CreateBuffer(&desc);
}
wgpu::ImageCopyTexture imageCopyTexture;
imageCopyTexture.texture = texture.m_ptr;
imageCopyTexture.origin = { 0, 0, 0 };
wgpu::ImageCopyBuffer imageCopyBuffer;
imageCopyBuffer.buffer = readback.m_buffer;
imageCopyBuffer.layout.bytesPerRow = dstpitch;
imageCopyBuffer.layout.rowsPerImage = srcHeight;
wgpu::Extent3D extent3D = { srcWidth, srcHeight, 1 };
getBlitCommandEncoder().CopyTextureToBuffer(&imageCopyTexture, &imageCopyBuffer, &extent3D);
auto finish = [](WGPUBufferMapAsyncStatus status, void* userdata)
{
ReadbackWgpu* readback = static_cast<ReadbackWgpu*>(userdata);
void const* data = readback->m_buffer.GetConstMappedRange();
if(status == WGPUBufferMapAsyncStatus_Success)
readback->readback(data);
};
m_cmd.finish();
m_cmd.kick(true);
readback.m_mapped = true;
readback.m_data = _data;
readback.m_size = pitch * srcHeight;
readback.m_buffer.MapAsync(wgpu::MapMode::Read, 0, size, finish, &readback);
}
void readTexture(TextureHandle _handle, void* _data, uint8_t _mip) override
{
TextureWgpu& texture = m_textures[_handle.idx];
readback(texture.m_readback, texture, _data);
}
void resizeTexture(TextureHandle _handle, uint16_t _width, uint16_t _height, uint8_t _numMips, uint16_t _numLayers) override
{
TextureWgpu& texture = m_textures[_handle.idx];
uint32_t size = sizeof(uint32_t) + sizeof(TextureCreate);
const Memory* mem = alloc(size);
bx::StaticMemoryBlockWriter writer(mem->data, mem->size);
uint32_t magic = BGFX_CHUNK_MAGIC_TEX;
bx::write(&writer, magic);
TextureCreate tc;
tc.m_width = _width;
tc.m_height = _height;
tc.m_depth = 0;
tc.m_numLayers = _numLayers;
tc.m_numMips = _numMips;
tc.m_format = TextureFormat::Enum(texture.m_requestedFormat);
tc.m_cubeMap = false;
tc.m_mem = NULL;
bx::write(&writer, tc);
texture.destroy();
texture.create(_handle, mem, texture.m_flags, 0);
release(mem);
}
void overrideInternal(TextureHandle _handle, uintptr_t _ptr) override
{
BX_UNUSED(_handle, _ptr);
}
uintptr_t getInternal(TextureHandle _handle) override
{
BX_UNUSED(_handle);
return 0;
}
void destroyTexture(TextureHandle _handle) override
{
m_textures[_handle.idx].destroy();
}
void createFrameBuffer(FrameBufferHandle _handle, uint8_t _num, const Attachment* _attachment) override
{
m_frameBuffers[_handle.idx].create(_num, _attachment);
}
void createFrameBuffer(FrameBufferHandle _handle, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _format, TextureFormat::Enum _depthFormat) override
{
for (uint32_t ii = 0, num = m_numWindows; ii < num; ++ii)
{
FrameBufferHandle handle = m_windows[ii];
if (isValid(handle)
&& m_frameBuffers[handle.idx].m_nwh == _nwh)
{
destroyFrameBuffer(handle);
}
}
uint16_t denseIdx = m_numWindows++;
m_windows[denseIdx] = _handle;
FrameBufferWgpu& fb = m_frameBuffers[_handle.idx];
fb.create(denseIdx, _nwh, _width, _height, _format, _depthFormat);
fb.m_swapChain->resize(m_frameBuffers[_handle.idx], _width, _height, 0);
}
void destroyFrameBuffer(FrameBufferHandle _handle) override
{
uint16_t denseIdx = m_frameBuffers[_handle.idx].destroy();
if (UINT16_MAX != denseIdx)
{
--m_numWindows;
if (m_numWindows > 1)
{
FrameBufferHandle handle = m_windows[m_numWindows];
m_windows[m_numWindows] = {kInvalidHandle};
if (m_numWindows != denseIdx)
{
m_windows[denseIdx] = handle;
m_frameBuffers[handle.idx].m_denseIdx = denseIdx;
}
}
}
}
void createUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name) override
{
if (NULL != m_uniforms[_handle.idx])
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
}
uint32_t size = bx::alignUp(g_uniformTypeSize[_type]*_num, 16);
void* data = BX_ALLOC(g_allocator, size);
bx::memSet(data, 0, size);
m_uniforms[_handle.idx] = data;
m_uniformReg.add(_handle, _name);
}
void destroyUniform(UniformHandle _handle) override
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
m_uniforms[_handle.idx] = NULL;
m_uniformReg.remove(_handle);
}
void requestScreenShot(FrameBufferHandle _handle, const char* _filePath) override
{
BX_UNUSED(_handle); BX_UNUSED(_filePath);
}
void updateViewName(ViewId _id, const char* _name) override
{
bx::strCopy(
&s_viewName[_id][BGFX_CONFIG_MAX_VIEW_NAME_RESERVED]
, BX_COUNTOF(s_viewName[0])-BGFX_CONFIG_MAX_VIEW_NAME_RESERVED
, _name
);
}
void updateUniform(uint16_t _loc, const void* _data, uint32_t _size) override
{
bx::memCopy(m_uniforms[_loc], _data, _size);
}
void invalidateOcclusionQuery(OcclusionQueryHandle _handle) override
{
BX_UNUSED(_handle);
}
void setMarker(const char* _marker, uint16_t _len) override
{
BX_UNUSED(_len);
if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION) )
{
m_renderEncoder.InsertDebugMarker(_marker);
}
}
virtual void setName(Handle _handle, const char* _name, uint16_t _len) override
{
BX_UNUSED(_handle); BX_UNUSED(_name); BX_UNUSED(_len);
BX_UNUSED(_len);
switch (_handle.type)
{
case Handle::IndexBuffer:
m_indexBuffers[_handle.idx].m_label.clear();
m_indexBuffers[_handle.idx].m_label.append(_name);
break;
case Handle::Shader:
m_shaders[_handle.idx].m_label.clear();
m_shaders[_handle.idx].m_label.append(_name);
break;
case Handle::Texture:
m_textures[_handle.idx].m_label.clear();
m_textures[_handle.idx].m_label.append(_name);
break;
case Handle::VertexBuffer:
m_vertexBuffers[_handle.idx].m_label.clear();
m_vertexBuffers[_handle.idx].m_label.append(_name);
break;
default:
BX_ASSERT(false, "Invalid handle type?! %d", _handle.type);
break;
}
}
void submitBlit(BlitState& _bs, uint16_t _view);
void submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) override;
void blitSetup(TextVideoMemBlitter& _blitter) override
{
BX_UNUSED(_blitter);
}
void blitRender(TextVideoMemBlitter& _blitter, uint32_t _numIndices) override
{
const uint32_t numVertices = _numIndices*4/6;
if (0 < numVertices)
{
m_indexBuffers [_blitter.m_ib->handle.idx].update(
0
, bx::strideAlign(_numIndices*2, 4)
, _blitter.m_ib->data
, true
);
m_vertexBuffers[_blitter.m_vb->handle.idx].update(
0
, numVertices*_blitter.m_layout.m_stride
, _blitter.m_vb->data
, true
);
endEncoding();
uint32_t width = m_resolution.width;
uint32_t height = m_resolution.height;
FrameBufferHandle fbh = BGFX_INVALID_HANDLE;
uint64_t state = 0
| BGFX_STATE_WRITE_RGB
| BGFX_STATE_WRITE_A
| BGFX_STATE_DEPTH_TEST_ALWAYS
;
PipelineStateWgpu* pso = getPipelineState(
state
, 0
, 0
, fbh
, _blitter.m_vb->layoutHandle
, false
, _blitter.m_program
, 0
);
RenderPassDescriptor renderPassDescriptor;
wgpu::RenderPassColorAttachment& color = renderPassDescriptor.colorAttachments[0];
setFrameBuffer(renderPassDescriptor, fbh);
color.loadOp = wgpu::LoadOp::Load;
color.storeOp = wgpu::StoreOp::Store;
// NULL != renderPassDescriptor.colorAttachments[0].resolveTexture
// ? wgpu::StoreOp::MultisampleResolve
// : wgpu::StoreOp::Store
//;
wgpu::RenderPassEncoder rce = m_cmd.m_renderEncoder.BeginRenderPass(&renderPassDescriptor.desc);
m_renderEncoder = rce;
rce.SetViewport(0.0f, 0.0f, (float)width, (float)height, 0.0f, 1.0f);
rce.SetScissorRect(0.0f, 0.0f, (float)width, (float)height);
rce.SetPipeline(pso->m_rps);
ProgramWgpu& program = m_program[_blitter.m_program.idx];
ScratchBufferWgpu& scratchBuffer = m_scratchBuffers[0];
BindStateCacheWgpu& bindStates = m_bindStateCache[0];
float proj[16];
bx::mtxOrtho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f, 0.0f, false);
PredefinedUniform& predefined = program.m_predefined[0];
uint8_t flags = predefined.m_type;
setShaderUniform(flags, predefined.m_loc, proj, 4);
BX_ASSERT(program.m_vsh->m_size > 0, "Not supposed to happen");
const uint32_t voffset = scratchBuffer.write(m_vsScratch, program.m_vsh->m_gpuSize);
const uint32_t fsize = (NULL != program.m_fsh ? program.m_fsh->m_gpuSize : 0);
BX_ASSERT(fsize == 0, "Not supposed to happen");
TextureWgpu& texture = m_textures[_blitter.m_texture.idx];
BindingsWgpu b;
BindStateWgpu& bindState = allocBindState(program, bindStates, b, scratchBuffer);
wgpu::BindGroupEntry& textureEntry = b.m_entries[b.numEntries++];
textureEntry.binding = program.m_textures[0].binding;
textureEntry.textureView = texture.m_ptr.CreateView();
wgpu::BindGroupEntry& samplerEntry = b.m_entries[b.numEntries++];
samplerEntry.binding = program.m_samplers[0].binding;
samplerEntry.sampler = 0 == (BGFX_SAMPLER_INTERNAL_DEFAULT & state)
? getSamplerState(state)
: texture.m_sampler;
bindGroups(program, bindState, b);
uint32_t numOffset = 1;
uint32_t offsets[1] = { voffset };
bindProgram(rce, program, bindState, numOffset, offsets);
VertexBufferWgpu& vb = m_vertexBuffers[_blitter.m_vb->handle.idx];
rce.SetVertexBuffer(0, vb.m_ptr);
IndexBufferWgpu& ib = m_indexBuffers[_blitter.m_ib->handle.idx];
rce.SetIndexBuffer(ib.m_ptr, ib.m_format);
rce.DrawIndexed(_numIndices, 1, 0, 0, 0);
}
}
bool isDeviceRemoved() override
{
return false;
}
void flip() override
{
for (uint32_t ii = 0, num = m_numWindows; ii < num; ++ii)
{
FrameBufferWgpu& frameBuffer = ii == 0 ? m_mainFrameBuffer : m_frameBuffers[m_windows[ii].idx];
if (NULL != frameBuffer.m_swapChain)
//&& frameBuffer.m_swapChain->m_drawable)
{
SwapChainWgpu& swapChain = *frameBuffer.m_swapChain;
swapChain.flip();
}
}
m_cmd.m_stagingEncoder = NULL;
m_cmd.m_renderEncoder = NULL;
}
void updateResolution(const Resolution& _resolution)
{
m_resolution = _resolution;
return; // TODO (hugoam)
m_mainFrameBuffer.m_swapChain->m_maxAnisotropy = !!(_resolution.reset & BGFX_RESET_MAXANISOTROPY)
? 16
: 1
;
const uint32_t maskFlags = ~(0
| BGFX_RESET_MAXANISOTROPY
| BGFX_RESET_DEPTH_CLAMP
| BGFX_RESET_SUSPEND
);
if (m_resolution.width != _resolution.width
|| m_resolution.height != _resolution.height
|| (m_resolution.reset&maskFlags) != (_resolution.reset&maskFlags) )
{
wgpu::TextureFormat prevMetalLayerPixelFormat; // = m_mainFrameBuffer.m_swapChain->m_metalLayer.pixelFormat;
BX_UNUSED(prevMetalLayerPixelFormat);
m_resolution = _resolution;
m_resolution.reset &= ~BGFX_RESET_INTERNAL_FORCE;
m_mainFrameBuffer.m_swapChain->resize(m_mainFrameBuffer, _resolution.width, _resolution.height, _resolution.reset);
for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii)
{
m_frameBuffers[ii].postReset();
}
updateCapture();
m_textVideoMem.resize(false, _resolution.width, _resolution.height);
m_textVideoMem.clear();
//if (prevMetalLayerPixelFormat != m_mainFrameBuffer.m_swapChain->m_metalLayer.pixelFormat)
{
//MTL_RELEASE(m_screenshotBlitRenderPipelineState)
//reset(m_renderPipelineDescriptor);
//m_renderPipelineDescriptor.colorAttachments[0].pixelFormat = m_mainFrameBuffer.m_swapChain->m_metalLayer.pixelFormat;
//m_renderPipelineDescriptor.vertexFunction = m_screenshotBlitProgram.m_vsh->m_function;
//m_renderPipelineDescriptor.fragmentFunction = m_screenshotBlitProgram.m_fsh->m_function;
//m_screenshotBlitRenderPipelineState = m_device.newRenderPipelineStateWithDescriptor(m_renderPipelineDescriptor);
}
}
}
void invalidateCompute()
{
if (m_computeEncoder)
{
m_computeEncoder.EndPass();
m_computeEncoder = NULL;
}
}
void updateCapture()
{
}
void capture()
{
}
void captureFinish()
{
}
BindStateWgpu& allocBindState(const ProgramWgpu& program, BindStateCacheWgpu& bindStates, BindingsWgpu& bindings, ScratchBufferWgpu& scratchBuffer)
{
BindStateWgpu& bindState = bindStates.m_bindStates[bindStates.m_currentBindState];
bindStates.m_currentBindState++;
bindState.numOffset = program.m_numUniforms;
// first two bindings are always uniform buffer (vertex/fragment)
if (0 < program.m_vsh->m_gpuSize)
{
bindings.m_entries[0].binding = kSpirvVertexBinding;
bindings.m_entries[0].offset = 0;
bindings.m_entries[0].size = program.m_vsh->m_gpuSize;
bindings.m_entries[0].buffer = scratchBuffer.m_buffer;
bindings.numEntries++;
}
if (NULL != program.m_fsh
&& 0 < program.m_fsh->m_gpuSize)
{
bindings.m_entries[1].binding = kSpirvFragmentBinding;
bindings.m_entries[1].offset = 0;
bindings.m_entries[1].size = program.m_fsh->m_gpuSize;
bindings.m_entries[1].buffer = scratchBuffer.m_buffer;
bindings.numEntries++;
}
return bindState;
}
void bindGroups(const ProgramWgpu& program, BindStateWgpu& bindState, BindingsWgpu& bindings)
{
wgpu::BindGroupDescriptor bindGroupDesc;
bindGroupDesc.layout = program.m_bindGroupLayout;
bindGroupDesc.entryCount = bindings.numEntries;
bindGroupDesc.entries = bindings.m_entries;
bindState.m_bindGroup = m_device.CreateBindGroup(&bindGroupDesc);
}
template <class Encoder>
void bindProgram(Encoder& encoder, const ProgramWgpu& program, BindStateWgpu& bindState, uint32_t numOffset, uint32_t* offsets)
{
BX_ASSERT(bindState.numOffset == numOffset, "We're obviously doing something wrong");
encoder.SetBindGroup(0, bindState.m_bindGroup, numOffset, offsets);
}
BindStateWgpu& allocAndFillBindState(const ProgramWgpu& program, BindStateCacheWgpu& bindStates, ScratchBufferWgpu& scratchBuffer, const RenderBind& renderBind)
{
BindingsWgpu b;
BindStateWgpu& bindState = allocBindState(program, bindStates, b, scratchBuffer);
for (uint8_t stage = 0; stage < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++stage)
{
const Binding& bind = renderBind.m_bind[stage];
const BindInfo& bindInfo = program.m_bindInfo[stage];
bool isUsed = isValid(program.m_bindInfo[stage].m_uniform);
BX_ASSERT(!isUsed || kInvalidHandle != bind.m_idx, "All expected bindings must be bound with WebGPU");
if (kInvalidHandle != bind.m_idx)
{
switch (bind.m_type)
{
case Binding::Image:
{
TextureWgpu& texture = m_textures[bind.m_idx];
wgpu::BindGroupEntry& entry = b.m_entries[b.numEntries++];
entry.binding = bindInfo.m_binding;
entry.textureView = texture.getTextureMipLevel(bind.m_mip);
if (Access::Read == bind.m_access)
{
wgpu::BindGroupEntry& samplerEntry = b.m_entries[b.numEntries++];
samplerEntry.binding = bindInfo.m_binding + 16;
samplerEntry.sampler = texture.m_sampler;
}
}
break;
case Binding::Texture:
{
// apparently bgfx allows to set a texture to a stage that a program does not even use
if (isUsed)
{
TextureWgpu& texture = m_textures[bind.m_idx];
uint32_t flags = bind.m_samplerFlags;
wgpu::TextureViewDescriptor viewDesc = defaultDescriptor<wgpu::TextureViewDescriptor>();
viewDesc.dimension = program.m_textures[bindInfo.m_index].texture.viewDimension;
wgpu::BindGroupEntry& textureEntry = b.m_entries[b.numEntries++];
textureEntry.binding = bindInfo.m_binding;
//textureEntry.textureView = texture.m_ptr.CreateView();
textureEntry.textureView = texture.m_ptr.CreateView(&viewDesc);
wgpu::BindGroupEntry& samplerEntry = b.m_entries[b.numEntries++];
samplerEntry.binding = bindInfo.m_binding + kSpirvSamplerShift;
samplerEntry.sampler = 0 == (BGFX_SAMPLER_INTERNAL_DEFAULT & flags)
? getSamplerState(flags)
: texture.m_sampler;
}
}
break;
case Binding::IndexBuffer:
case Binding::VertexBuffer:
{
const BufferWgpu& buffer = Binding::IndexBuffer == bind.m_type
? (const BufferWgpu&) m_indexBuffers[bind.m_idx]
: (const BufferWgpu&) m_vertexBuffers[bind.m_idx]
;
wgpu::BindGroupEntry& entry = b.m_entries[b.numEntries++];
entry.binding = bindInfo.m_binding;
entry.offset = 0;
entry.size = buffer.m_size;
entry.buffer = buffer.m_ptr;
}
break;
}
}
}
bindGroups(program, bindState, b);
return bindState;
};
void setShaderUniform(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs)
{
if(_flags&kUniformFragmentBit)
{
bx::memCopy(&m_fsScratch[_regIndex], _val, _numRegs * 16);
}
else
{
bx::memCopy(&m_vsScratch[_regIndex], _val, _numRegs * 16);
}
}
void setShaderUniform4f(uint8_t _flags, uint32_t _loc, const void* _val, uint32_t _numRegs)
{
setShaderUniform(_flags, _loc, _val, _numRegs);
}
void setShaderUniform4x4f(uint8_t _flags, uint32_t _loc, const void* _val, uint32_t _numRegs)
{
setShaderUniform(_flags, _loc, _val, _numRegs);
}
void commit(UniformBuffer& _uniformBuffer)
{
_uniformBuffer.reset();
for (;;)
{
uint32_t opcode = _uniformBuffer.read();
if (UniformType::End == opcode)
{
break;
}
UniformType::Enum type;
uint16_t loc;
uint16_t num;
uint16_t copy;
UniformBuffer::decodeOpcode(opcode, type, loc, num, copy);
const char* data;
if (copy)
{
data = _uniformBuffer.read(g_uniformTypeSize[type]*num);
}
else
{
UniformHandle handle;
bx::memCopy(&handle, _uniformBuffer.read(sizeof(UniformHandle) ), sizeof(UniformHandle) );
data = (const char*)m_uniforms[handle.idx];
}
switch ( (uint32_t)type)
{
case UniformType::Mat3:
case UniformType::Mat3|kUniformFragmentBit:
{
float* value = (float*)data;
for (uint32_t ii = 0, count = num/3; ii < count; ++ii, loc += 3*16, value += 9)
{
Matrix4 mtx;
mtx.un.val[ 0] = value[0];
mtx.un.val[ 1] = value[1];
mtx.un.val[ 2] = value[2];
mtx.un.val[ 3] = 0.0f;
mtx.un.val[ 4] = value[3];
mtx.un.val[ 5] = value[4];
mtx.un.val[ 6] = value[5];
mtx.un.val[ 7] = 0.0f;
mtx.un.val[ 8] = value[6];
mtx.un.val[ 9] = value[7];
mtx.un.val[10] = value[8];
mtx.un.val[11] = 0.0f;
setShaderUniform(uint8_t(type), loc, &mtx.un.val[0], 3);
}
}
break;
case UniformType::Sampler:
case UniformType::Sampler | kUniformFragmentBit:
case UniformType::Vec4:
case UniformType::Vec4 | kUniformFragmentBit:
case UniformType::Mat4:
case UniformType::Mat4 | kUniformFragmentBit:
{
setShaderUniform(uint8_t(type), loc, data, num);
}
break;
case UniformType::End:
break;
default:
BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", _uniformBuffer.getPos(), opcode, type, loc, num, copy);
break;
}
}
}
void clearQuad(ClearQuad& _clearQuad, const Rect& _rect, const Clear& _clear, const float _palette[][4])
{
uint32_t width;
uint32_t height;
if (isValid(m_fbh) )
{
const FrameBufferWgpu& fb = m_frameBuffers[m_fbh.idx];
width = fb.m_width;
height = fb.m_height;
}
else
{
width = m_resolution.width;
height = m_resolution.height;
}
uint64_t state = 0;
state |= _clear.m_flags & BGFX_CLEAR_COLOR ? BGFX_STATE_WRITE_RGB|BGFX_STATE_WRITE_A : 0;
state |= _clear.m_flags & BGFX_CLEAR_DEPTH ? BGFX_STATE_DEPTH_TEST_ALWAYS|BGFX_STATE_WRITE_Z : 0;
state |= BGFX_STATE_PT_TRISTRIP;
uint64_t stencil = 0;
stencil |= _clear.m_flags & BGFX_CLEAR_STENCIL ? 0
| BGFX_STENCIL_TEST_ALWAYS
| BGFX_STENCIL_FUNC_REF(_clear.m_stencil)
| BGFX_STENCIL_FUNC_RMASK(0xff)
| BGFX_STENCIL_OP_FAIL_S_REPLACE
| BGFX_STENCIL_OP_FAIL_Z_REPLACE
| BGFX_STENCIL_OP_PASS_Z_REPLACE
: 0
;
uint32_t numMrt = 1;
FrameBufferHandle fbh = m_fbh;
if (isValid(fbh) && m_frameBuffers[fbh.idx].m_swapChain == NULL)
{
const FrameBufferWgpu& fb = m_frameBuffers[fbh.idx];
numMrt = bx::uint32_max(1, fb.m_num);
}
wgpu::RenderPassEncoder rce = m_renderEncoder;
ProgramHandle programHandle = _clearQuad.m_program[numMrt-1];
const VertexLayout* decl = &_clearQuad.m_layout;
const PipelineStateWgpu* pso = getPipelineState(
state
, stencil
, 0
, fbh
, 1
, &decl
, false
, programHandle
, 0
);
rce.SetPipeline(pso->m_rps);
float mrtClearColor[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS][4];
float mrtClearDepth[4] = { _clear.m_depth };
if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags)
{
for (uint32_t ii = 0; ii < numMrt; ++ii)
{
uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_COLOR_PALETTE-1, _clear.m_index[ii]);
bx::memCopy(mrtClearColor[ii], _palette[index], 16);
}
}
else
{
float rgba[4] =
{
_clear.m_index[0]*1.0f/255.0f,
_clear.m_index[1]*1.0f/255.0f,
_clear.m_index[2]*1.0f/255.0f,
_clear.m_index[3]*1.0f/255.0f,
};
for (uint32_t ii = 0; ii < numMrt; ++ii)
{
bx::memCopy( mrtClearColor[ii]
, rgba
, 16
);
}
}
ProgramWgpu& program = m_program[programHandle.idx];
ScratchBufferWgpu& scratchBuffer = m_scratchBuffers[0];
BindStateCacheWgpu& bindStates = m_bindStateCache[0];
BindingsWgpu b;
BindStateWgpu& bindState = allocBindState(program, bindStates, b, scratchBuffer);
const uint32_t voffset = scratchBuffer.write(mrtClearDepth, sizeof(mrtClearDepth), program.m_vsh->m_gpuSize);
const uint32_t foffset = scratchBuffer.write(mrtClearColor, sizeof(mrtClearColor), program.m_fsh->m_gpuSize);
uint32_t numOffset = 2;
uint32_t offsets[2] = { voffset, foffset };
bindGroups(program, bindState, b);
const VertexBufferWgpu& vb = m_vertexBuffers[_clearQuad.m_vb.idx];
bindProgram(rce, program, bindState, numOffset, offsets);
rce.SetViewport(_rect.m_x, _rect.m_y, _rect.m_width, _rect.m_height, 0.0f, 1.0f);
rce.SetScissorRect(_rect.m_x, _rect.m_y, _rect.m_width, _rect.m_height);
rce.SetVertexBuffer(0, vb.m_ptr);
rce.Draw(4, 1, 0, 0);
}
wgpu::TextureViewDescriptor attachmentView(const Attachment& _at, const TextureWgpu& _texture)
{
bool _resolve = bool(_texture.m_ptrMsaa);
BX_UNUSED(_resolve);
wgpu::TextureViewDescriptor desc;
if (1 < _texture.m_numSides)
{
desc.baseArrayLayer = _at.layer;
}
desc.baseMipLevel = _at.mip;
desc.arrayLayerCount = 1;
desc.mipLevelCount = 1;
if (_texture.m_type == TextureWgpu::Texture3D)
{
desc.dimension = wgpu::TextureViewDimension::e3D;
}
return desc;
}
void setFrameBuffer(RenderPassDescriptor& _renderPassDescriptor, FrameBufferHandle _fbh, bool _msaa = true)
{
if (!isValid(_fbh)
|| m_frameBuffers[_fbh.idx].m_swapChain)
{
SwapChainWgpu* swapChain = !isValid(_fbh)
? m_mainFrameBuffer.m_swapChain
: m_frameBuffers[_fbh.idx].m_swapChain
;
_renderPassDescriptor.colorAttachments[0] = defaultDescriptor<wgpu::RenderPassColorAttachment>();
_renderPassDescriptor.desc.colorAttachmentCount = 1;
// Force 1 array layers for attachments
wgpu::TextureViewDescriptor desc;
desc.arrayLayerCount = 1;
if (swapChain->m_backBufferColorMsaa)
{
_renderPassDescriptor.colorAttachments[0].view = swapChain->m_backBufferColorMsaa.CreateView(&desc);
_renderPassDescriptor.colorAttachments[0].resolveTarget = swapChain->current();
}
else
{
_renderPassDescriptor.colorAttachments[0].view = swapChain->current();
}
_renderPassDescriptor.depthStencilAttachment = defaultDescriptor<wgpu::RenderPassDepthStencilAttachment>();
_renderPassDescriptor.depthStencilAttachment.view = swapChain->m_backBufferDepth.CreateView();
_renderPassDescriptor.desc.depthStencilAttachment = &_renderPassDescriptor.depthStencilAttachment;
}
else
{
FrameBufferWgpu& frameBuffer = m_frameBuffers[_fbh.idx];
_renderPassDescriptor.desc.colorAttachmentCount = frameBuffer.m_num;
for (uint32_t ii = 0; ii < frameBuffer.m_num; ++ii)
{
const TextureWgpu& texture = m_textures[frameBuffer.m_colorHandle[ii].idx];
const wgpu::TextureViewDescriptor desc = attachmentView(frameBuffer.m_colorAttachment[ii], texture);
_renderPassDescriptor.colorAttachments[ii] = defaultDescriptor<wgpu::RenderPassColorAttachment>();
_renderPassDescriptor.colorAttachments[ii].view = texture.m_ptrMsaa
? texture.m_ptrMsaa.CreateView(&desc)
: texture.m_ptr.CreateView(&desc)
;
_renderPassDescriptor.colorAttachments[ii].resolveTarget = texture.m_ptrMsaa
? texture.m_ptr.CreateView(&desc)
: wgpu::TextureView()
;
}
if (isValid(frameBuffer.m_depthHandle) )
{
const TextureWgpu& texture = m_textures[frameBuffer.m_depthHandle.idx];
const wgpu::TextureViewDescriptor desc = attachmentView(frameBuffer.m_depthAttachment, texture);
_renderPassDescriptor.depthStencilAttachment = defaultDescriptor<wgpu::RenderPassDepthStencilAttachment>();
_renderPassDescriptor.depthStencilAttachment.view = texture.m_ptrMsaa
? texture.m_ptrMsaa.CreateView(&desc)
: texture.m_ptr.CreateView(&desc)
;
_renderPassDescriptor.desc.depthStencilAttachment = &_renderPassDescriptor.depthStencilAttachment;
}
}
m_fbh = _fbh;
m_rtMsaa = _msaa;
}
void setDepthStencilState(wgpu::DepthStencilState& desc, uint64_t _state, uint64_t _stencil = 0)
{
const uint32_t fstencil = unpackStencil(0, _stencil);
const uint32_t func = (_state&BGFX_STATE_DEPTH_TEST_MASK) >> BGFX_STATE_DEPTH_TEST_SHIFT;
desc.depthWriteEnabled = !!(BGFX_STATE_WRITE_Z & _state);
desc.depthCompare = s_cmpFunc[func];
uint32_t bstencil = unpackStencil(1, _stencil);
const uint32_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != fstencil;
bstencil = frontAndBack ? bstencil : fstencil;
desc.stencilFront = defaultDescriptor<wgpu::StencilFaceState>();
desc.stencilBack = defaultDescriptor<wgpu::StencilFaceState>();
if (0 != _stencil)
{
// TODO (hugoam)
const uint32_t readMask = (fstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT;
const uint32_t writeMask = 0xff;
desc.stencilReadMask = readMask;
desc.stencilWriteMask = writeMask;
desc.stencilFront.failOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT];
desc.stencilFront.depthFailOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT];
desc.stencilFront.passOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT];
desc.stencilFront.compare = s_cmpFunc[(fstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT];
desc.stencilBack.failOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT];
desc.stencilBack.depthFailOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT];
desc.stencilBack.passOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT];
desc.stencilBack.compare = s_cmpFunc[(bstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT];
}
}
RenderPassStateWgpu* getRenderPassState(bgfx::FrameBufferHandle fbh, bool clear, Clear clr)
{
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(fbh.idx);
murmur.add(clear);
murmur.add(&clr, sizeof(clr));
uint32_t hash = murmur.end();
RenderPassStateWgpu* rps = m_renderPassStateCache.find(hash);
if (NULL == rps)
{
rps = BX_NEW(g_allocator, RenderPassStateWgpu);
m_renderPassStateCache.add(hash, rps);
}
return rps;
}
PipelineStateWgpu* getPipelineState(
uint64_t _state
, uint64_t _stencil
, uint32_t _rgba
, FrameBufferHandle _fbh
, uint8_t _numStreams
, const VertexLayout** _vertexDecls
, bool _isIndex16
, ProgramHandle _program
, uint8_t _numInstanceData
)
{
_state &= 0
| BGFX_STATE_WRITE_RGB
| BGFX_STATE_WRITE_A
| BGFX_STATE_WRITE_Z
| BGFX_STATE_DEPTH_TEST_MASK
| BGFX_STATE_BLEND_MASK
| BGFX_STATE_BLEND_EQUATION_MASK
| BGFX_STATE_BLEND_INDEPENDENT
| BGFX_STATE_BLEND_ALPHA_TO_COVERAGE
| BGFX_STATE_CULL_MASK
| BGFX_STATE_MSAA
| BGFX_STATE_LINEAA
| BGFX_STATE_CONSERVATIVE_RASTER
| BGFX_STATE_PT_MASK
;
const bool independentBlendEnable = !!(BGFX_STATE_BLEND_INDEPENDENT & _state);
const ProgramWgpu& program = m_program[_program.idx];
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(_state);
murmur.add(_stencil);
murmur.add(independentBlendEnable ? _rgba : 0);
murmur.add(_numInstanceData);
FrameBufferWgpu& frameBuffer = !isValid(_fbh) ? m_mainFrameBuffer : m_frameBuffers[_fbh.idx];
murmur.add(frameBuffer.m_pixelFormatHash);
murmur.add(program.m_vsh->m_hash);
if (NULL != program.m_fsh)
{
murmur.add(program.m_fsh->m_hash);
}
for (uint8_t ii = 0; ii < _numStreams; ++ii)
{
murmur.add(_vertexDecls[ii]->m_hash);
}
uint32_t hash = murmur.end();
PipelineStateWgpu* pso = m_pipelineStateCache.find(hash);
if (NULL == pso)
{
pso = BX_NEW(g_allocator, PipelineStateWgpu);
//pd.alphaToCoverageEnabled = !!(BGFX_STATE_BLEND_ALPHA_TO_COVERAGE & _state);
RenderPipelineDescriptor& pd = pso->m_rpd;
uint32_t frameBufferAttachment = 1;
uint32_t sampleCount = 1;
if (!isValid(_fbh)
|| s_renderWgpu->m_frameBuffers[_fbh.idx].m_swapChain)
{
SwapChainWgpu& swapChain = !isValid(_fbh)
? *s_renderWgpu->m_mainFrameBuffer.m_swapChain
: *s_renderWgpu->m_frameBuffers[_fbh.idx].m_swapChain
;
sampleCount = swapChain.m_backBufferColorMsaa
? swapChain.m_sampleCount
: 1
;
pd.targets[0].format = swapChain.m_colorFormat;
pd.depthStencil.format = swapChain.m_depthFormat;
pd.desc.depthStencil = &pd.depthStencil;
}
else
{
frameBufferAttachment = frameBuffer.m_num;
for (uint32_t ii = 0; ii < frameBuffer.m_num; ++ii)
{
const TextureWgpu& texture = m_textures[frameBuffer.m_colorHandle[ii].idx];
sampleCount = texture.m_ptrMsaa
? texture.m_sampleCount
: 1
;
pd.targets[ii].format = s_textureFormat[texture.m_textureFormat].m_fmt;
}
pd.fragment.targetCount = frameBuffer.m_num;
if (isValid(frameBuffer.m_depthHandle) )
{
const TextureWgpu& texture = m_textures[frameBuffer.m_depthHandle.idx];
pd.depthStencil.format = s_textureFormat[texture.m_textureFormat].m_fmt;
pd.desc.depthStencil = &pd.depthStencil;
}
}
const uint32_t blend = uint32_t( (_state&BGFX_STATE_BLEND_MASK )>>BGFX_STATE_BLEND_SHIFT);
const uint32_t equation = uint32_t( (_state&BGFX_STATE_BLEND_EQUATION_MASK)>>BGFX_STATE_BLEND_EQUATION_SHIFT);
const uint32_t srcRGB = (blend )&0xf;
const uint32_t dstRGB = (blend>> 4)&0xf;
const uint32_t srcA = (blend>> 8)&0xf;
const uint32_t dstA = (blend>>12)&0xf;
const uint32_t equRGB = (equation )&0x7;
const uint32_t equA = (equation>>3)&0x7;
wgpu::ColorWriteMask writeMask = wgpu::ColorWriteMask::None;
writeMask |= (_state&BGFX_STATE_WRITE_R) ? wgpu::ColorWriteMask::Red : wgpu::ColorWriteMask::None;
writeMask |= (_state&BGFX_STATE_WRITE_G) ? wgpu::ColorWriteMask::Green : wgpu::ColorWriteMask::None;
writeMask |= (_state&BGFX_STATE_WRITE_B) ? wgpu::ColorWriteMask::Blue : wgpu::ColorWriteMask::None;
writeMask |= (_state&BGFX_STATE_WRITE_A) ? wgpu::ColorWriteMask::Alpha : wgpu::ColorWriteMask::None;
for (uint32_t ii = 0; ii < (independentBlendEnable ? 1 : frameBufferAttachment); ++ii)
{
wgpu::ColorTargetState& drt = pd.targets[ii];
wgpu::BlendState& blend = pd.blends[ii];
if(!(BGFX_STATE_BLEND_MASK & _state))
{
// useless
blend.color = defaultDescriptor<wgpu::BlendComponent>();
blend.alpha = defaultDescriptor<wgpu::BlendComponent>();
drt.blend = NULL;
}
else
{
blend.color.srcFactor = s_blendFactor[srcRGB][0];
blend.color.dstFactor = s_blendFactor[dstRGB][0];
blend.color.operation = s_blendEquation[equRGB];
blend.alpha.srcFactor = s_blendFactor[srcA][1];
blend.alpha.dstFactor = s_blendFactor[dstA][1];
blend.alpha.operation = s_blendEquation[equA];
drt.blend = &blend;
}
drt.writeMask = writeMask;
}
if (independentBlendEnable)
{
for (uint32_t ii = 1, rgba = _rgba; ii < frameBufferAttachment; ++ii, rgba >>= 11)
{
wgpu::ColorTargetState& drt = pd.targets[ii];
wgpu::BlendState& blend = pd.blends[ii];
//drt.blendingEnabled = 0 != (rgba&0x7ff);
const uint32_t src = (rgba )&0xf;
const uint32_t dst = (rgba>>4)&0xf;
const uint32_t equationIndex = (rgba>>8)&0x7;
blend.color.srcFactor = s_blendFactor[src][0];
blend.color.dstFactor = s_blendFactor[dst][0];
blend.color.operation = s_blendEquation[equationIndex];
blend.alpha.srcFactor = s_blendFactor[src][1];
blend.alpha.dstFactor = s_blendFactor[dst][1];
blend.alpha.operation = s_blendEquation[equationIndex];
drt.writeMask = writeMask;
}
}
pd.desc.vertex.module = program.m_vsh->m_module;
if (NULL != program.m_fsh)
{
pd.fragment.module = program.m_fsh->m_module;
pd.desc.fragment = &pd.fragment;
}
setDepthStencilState(pd.depthStencil, _state, _stencil);
const uint64_t cull = _state & BGFX_STATE_CULL_MASK;
const uint8_t cullIndex = uint8_t(cull >> BGFX_STATE_CULL_SHIFT);
pd.desc.primitive.cullMode = s_cullMode[cullIndex];
pd.desc.primitive.frontFace = (_state & BGFX_STATE_FRONT_CCW) ? wgpu::FrontFace::CCW : wgpu::FrontFace::CW;
// pd.desc = m_renderPipelineDescriptor;
pd.desc.multisample.count = sampleCount;
wgpu::PipelineLayoutDescriptor layout = defaultDescriptor<wgpu::PipelineLayoutDescriptor>();
layout.bindGroupLayouts = &program.m_bindGroupLayout;
layout.bindGroupLayoutCount = 1;
BX_TRACE("Creating WebGPU render pipeline layout for program %s", program.m_vsh->name());
pd.desc.layout = m_device.CreatePipelineLayout(&layout);
// TODO (hugoam) this should be cached too ?
//uint32_t ref = (_state&BGFX_STATE_ALPHA_REF_MASK) >> BGFX_STATE_ALPHA_REF_SHIFT;
//viewState.m_alphaRef = ref / 255.0f;
const uint64_t primType = _state & BGFX_STATE_PT_MASK;
uint8_t primIndex = uint8_t(primType >> BGFX_STATE_PT_SHIFT);
PrimInfo prim = s_primInfo[primIndex];
pd.desc.primitive.topology = prim.m_type;
VertexStateDescriptor vertex;
vertex.desc.module = program.m_vsh->m_module;
vertex.desc.bufferCount = 0;
wgpu::VertexBufferLayout* inputBinding = vertex.buffers;
wgpu::VertexAttribute* inputAttrib = vertex.attributes;
auto fillVertexDecl = [&](const ShaderWgpu* _vsh, const VertexLayout& _decl)
{
vertex.desc.bufferCount += 1;
inputBinding->arrayStride = _decl.m_stride;
inputBinding->stepMode = wgpu::InputStepMode::Vertex;
inputBinding->attributes = inputAttrib;
uint32_t numAttribs = 0;
for(uint32_t attr = 0; attr < Attrib::Count; ++attr)
{
if(UINT16_MAX != _decl.m_attributes[attr])
{
if(UINT8_MAX == _vsh->m_attrRemap[attr])
continue;
inputAttrib->shaderLocation = _vsh->m_attrRemap[attr];
if(0 == _decl.m_attributes[attr])
{
inputAttrib->format = wgpu::VertexFormat::Float3;
inputAttrib->offset = 0;
}
else
{
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_decl.decode(Attrib::Enum(attr), num, type, normalized, asInt);
inputAttrib->format = s_attribType[type][num-1][normalized];
inputAttrib->offset = _decl.m_offset[attr];
}
++inputAttrib;
++numAttribs;
}
}
inputBinding->attributeCount = numAttribs;
inputBinding++;
return numAttribs;
};
//bool attrSet[Attrib::Count] = {};
uint16_t unsettedAttr[Attrib::Count];
bx::memCopy(unsettedAttr, program.m_vsh->m_attrMask, sizeof(uint16_t) * Attrib::Count);
uint8_t stream = 0;
for (; stream < _numStreams; ++stream)
{
VertexLayout layout;
bx::memCopy(&layout, _vertexDecls[stream], sizeof(VertexLayout));
const uint16_t* attrMask = program.m_vsh->m_attrMask;
for (uint32_t ii = 0; ii < Attrib::Count; ++ii)
{
Attrib::Enum iiattr = Attrib::Enum(ii);
uint16_t mask = attrMask[ii];
uint16_t attr = (layout.m_attributes[ii] & mask);
if (attr == 0)
{
layout.m_attributes[ii] = UINT16_MAX;
}
if (unsettedAttr[ii] && attr != UINT16_MAX)
{
unsettedAttr[ii] = 0;
}
}
fillVertexDecl(program.m_vsh, layout);
}
for (uint32_t ii = 0; ii < Attrib::Count; ++ii)
{
Attrib::Enum iiattr = Attrib::Enum(ii);
if (0 < unsettedAttr[ii])
{
//uint32_t numAttribs = vertexs.buffers[stream].attributeCount;
//uint32_t numAttribs = inputBinding->attributeCount;
//wgpu::VertexBufferLayout* inputAttrib = const_cast<VkVertexInputAttributeDescription*>(_vertexInputState.pVertexAttributeDescriptions + numAttribs);
inputAttrib->shaderLocation = program.m_vsh->m_attrRemap[ii];
//inputAttrib->binding = 0;
inputAttrib->format = wgpu::VertexFormat::Float3; // VK_FORMAT_R32G32B32_SFLOAT;
inputAttrib->offset = 0;
vertex.buffers[stream-1].attributeCount++;
++inputAttrib;
}
}
// TODO (hugoam) WebGPU will crash whenever we are not supplying the correct number of attributes (which depends on the stride passed to bgfx::allocInstanceDataBuffer)
// so we need to know the number of live instance attributes in the shader and if they aren't all supplied:
// - fail the pipeline state creation
// - bind dummy attributes
if (0 < _numInstanceData)
{
uint32_t numBindings = vertex.desc.bufferCount; // == stream+1 // .vertexBindingDescriptionCount;
uint32_t firstAttrib = vertex.buffers[stream-1].attributeCount;
uint32_t numAttribs = firstAttrib;
inputBinding->arrayStride = _numInstanceData * 16;
inputBinding->stepMode = wgpu::InputStepMode::Instance;
for (uint32_t inst = 0; inst < _numInstanceData; ++inst)
{
inputAttrib->shaderLocation = numAttribs;
inputAttrib->format = wgpu::VertexFormat::Float32x4;
inputAttrib->offset = inst * 16;
++numAttribs;
++inputAttrib;
}
vertex.desc.bufferCount = numBindings + 1;
vertex.buffers[stream].attributeCount = numAttribs - firstAttrib;
vertex.buffers[stream].attributes = &vertex.attributes[firstAttrib];
}
bool isStrip = prim.m_type == wgpu::PrimitiveTopology::LineStrip
|| prim.m_type == wgpu::PrimitiveTopology::TriangleStrip;
if (isStrip)
pd.desc.primitive.stripIndexFormat = _isIndex16 ? wgpu::IndexFormat::Uint16 : wgpu::IndexFormat::Uint32;
else
pd.desc.primitive.stripIndexFormat = wgpu::IndexFormat::Undefined;
pd.desc.vertex = vertex.desc;
BX_TRACE("Creating WebGPU render pipeline state for program %s", program.m_vsh->name());
pso->m_rps = m_device.CreateRenderPipeline2(&pd.desc);
m_pipelineStateCache.add(hash, pso);
}
return pso;
}
PipelineStateWgpu* getPipelineState(
uint64_t _state
, uint64_t _stencil
, uint32_t _rgba
, FrameBufferHandle _fbh
, VertexLayoutHandle _declHandle
, bool _isIndex16
, ProgramHandle _program
, uint8_t _numInstanceData
)
{
const VertexLayout* decl = &m_vertexDecls[_declHandle.idx];
return getPipelineState(
_state
, _stencil
, _rgba
, _fbh
, 1
, &decl
, _isIndex16
, _program
, _numInstanceData
);
}
PipelineStateWgpu* getComputePipelineState(ProgramHandle _program)
{
ProgramWgpu& program = m_program[_program.idx];
if (NULL == program.m_computePS)
{
PipelineStateWgpu* pso = BX_NEW(g_allocator, PipelineStateWgpu);
program.m_computePS = pso;
wgpu::PipelineLayoutDescriptor layout = defaultDescriptor<wgpu::PipelineLayoutDescriptor>();
layout.bindGroupLayouts = &program.m_bindGroupLayout;
layout.bindGroupLayoutCount = 1;
BX_TRACE("Creating WebGPU render pipeline layout for program %s", program.m_vsh->name());
pso->m_layout = m_device.CreatePipelineLayout(&layout);
wgpu::ComputePipelineDescriptor desc;
desc.layout = pso->m_layout;
desc.computeStage = { NULL, program.m_vsh->m_module, "main" };
BX_TRACE("Creating WebGPU render pipeline state for program %s", program.m_vsh->name());
pso->m_cps = m_device.CreateComputePipeline(&desc);
}
return program.m_computePS;
}
wgpu::Sampler getSamplerState(uint32_t _flags)
{
_flags &= BGFX_SAMPLER_BITS_MASK;
SamplerStateWgpu* sampler = m_samplerStateCache.find(_flags);
if (NULL == sampler)
{
sampler = BX_NEW(g_allocator, SamplerStateWgpu);
wgpu::SamplerDescriptor desc;
desc.addressModeU = s_textureAddress[(_flags&BGFX_SAMPLER_U_MASK)>>BGFX_SAMPLER_U_SHIFT];
desc.addressModeV = s_textureAddress[(_flags&BGFX_SAMPLER_V_MASK)>>BGFX_SAMPLER_V_SHIFT];
desc.addressModeW = s_textureAddress[(_flags&BGFX_SAMPLER_W_MASK)>>BGFX_SAMPLER_W_SHIFT];
desc.minFilter = s_textureFilterMinMag[(_flags&BGFX_SAMPLER_MIN_MASK)>>BGFX_SAMPLER_MIN_SHIFT];
desc.magFilter = s_textureFilterMinMag[(_flags&BGFX_SAMPLER_MAG_MASK)>>BGFX_SAMPLER_MAG_SHIFT];
desc.mipmapFilter = s_textureFilterMip[(_flags&BGFX_SAMPLER_MIP_MASK)>>BGFX_SAMPLER_MIP_SHIFT];
desc.lodMinClamp = 0;
desc.lodMaxClamp = bx::kFloatMax;
const uint32_t cmpFunc = (_flags&BGFX_SAMPLER_COMPARE_MASK)>>BGFX_SAMPLER_COMPARE_SHIFT;
desc.compare = 0 == cmpFunc
? wgpu::CompareFunction::Undefined
: s_cmpFunc[cmpFunc]
;
sampler->m_sampler = s_renderWgpu->m_device.CreateSampler(&desc);
m_samplerStateCache.add(_flags, sampler);
}
return sampler->m_sampler;
}
wgpu::CommandEncoder& getRenderEncoder()
{
if (!m_cmd.m_renderEncoder)
m_cmd.beginRender();
return m_cmd.m_renderEncoder;
}
wgpu::CommandEncoder& getStagingEncoder()
{
if (!m_cmd.m_stagingEncoder)
m_cmd.beginStaging();
return m_cmd.m_stagingEncoder;
}
wgpu::CommandEncoder& getBlitCommandEncoder()
{
if (m_renderEncoder || m_computeEncoder)
endEncoding();
return getRenderEncoder();
}
wgpu::RenderPassEncoder renderPass(bgfx::Frame* _render, bgfx::FrameBufferHandle fbh, bool clear, Clear clr, const char* name = NULL)
{
RenderPassStateWgpu* rps = s_renderWgpu->getRenderPassState(fbh, clear, clr);
RenderPassDescriptor& renderPassDescriptor = rps->m_rpd;
renderPassDescriptor.desc.label = name;
setFrameBuffer(renderPassDescriptor, fbh);
if(clear)
{
for(uint32_t ii = 0; ii < g_caps.limits.maxFBAttachments; ++ii)
{
wgpu::RenderPassColorAttachment& color = renderPassDescriptor.colorAttachments[ii];
if(0 != (BGFX_CLEAR_COLOR & clr.m_flags))
{
if(0 != (BGFX_CLEAR_COLOR_USE_PALETTE & clr.m_flags))
{
uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_COLOR_PALETTE - 1, clr.m_index[ii]);
const float* rgba = _render->m_colorPalette[index];
const float rr = rgba[0];
const float gg = rgba[1];
const float bb = rgba[2];
const float aa = rgba[3];
color.clearColor = { rr, gg, bb, aa };
}
else
{
float rr = clr.m_index[0] * 1.0f / 255.0f;
float gg = clr.m_index[1] * 1.0f / 255.0f;
float bb = clr.m_index[2] * 1.0f / 255.0f;
float aa = clr.m_index[3] * 1.0f / 255.0f;
color.clearColor = { rr, gg, bb, aa };
}
color.loadOp = wgpu::LoadOp::Clear;
}
else
{
color.loadOp = wgpu::LoadOp::Load;
}
//desc.storeOp = desc.view.sampleCount > 1 ? wgpu::StoreOp::MultisampleResolve : wgpu::StoreOp::Store;
color.storeOp = wgpu::StoreOp::Store;
}
wgpu::RenderPassDepthStencilAttachment& depthStencil = renderPassDescriptor.depthStencilAttachment;
if(depthStencil.view)
{
depthStencil.clearDepth = clr.m_depth;
depthStencil.depthLoadOp = 0 != (BGFX_CLEAR_DEPTH & clr.m_flags)
? wgpu::LoadOp::Clear
: wgpu::LoadOp::Load
;
depthStencil.depthStoreOp = m_mainFrameBuffer.m_swapChain->m_backBufferColorMsaa
? wgpu::StoreOp(0) //wgpu::StoreOp::DontCare
: wgpu::StoreOp::Store
;
depthStencil.clearStencil = clr.m_stencil;
depthStencil.stencilLoadOp = 0 != (BGFX_CLEAR_STENCIL & clr.m_flags)
? wgpu::LoadOp::Clear
: wgpu::LoadOp::Load
;
depthStencil.stencilStoreOp = m_mainFrameBuffer.m_swapChain->m_backBufferColorMsaa
? wgpu::StoreOp(0) //wgpu::StoreOp::DontCare
: wgpu::StoreOp::Store
;
}
}
else
{
for(uint32_t ii = 0; ii < g_caps.limits.maxFBAttachments; ++ii)
{
wgpu::RenderPassColorAttachment& color = renderPassDescriptor.colorAttachments[ii];
if(color.view)
{
color.loadOp = wgpu::LoadOp::Load;
}
}
wgpu::RenderPassDepthStencilAttachment& depthStencil = renderPassDescriptor.depthStencilAttachment;
if(depthStencil.view)
{
depthStencil.depthLoadOp = wgpu::LoadOp::Load;
depthStencil.depthStoreOp = wgpu::StoreOp::Store;
depthStencil.stencilLoadOp = wgpu::LoadOp::Load;
depthStencil.stencilStoreOp = wgpu::StoreOp::Store;
}
}
wgpu::RenderPassEncoder rce = m_cmd.m_renderEncoder.BeginRenderPass(&renderPassDescriptor.desc);
m_renderEncoder = rce;
return rce;
}
void endEncoding()
{
if (m_renderEncoder)
{
m_renderEncoder.EndPass();
m_renderEncoder = NULL;
}
if (m_computeEncoder)
{
m_computeEncoder.EndPass();
m_computeEncoder = NULL;
}
}
void* m_renderDocDll;
#if !BX_PLATFORM_EMSCRIPTEN
dawn_native::Instance m_instance;
#endif
wgpu::Device m_device;
wgpu::Queue m_queue;
TimerQueryWgpu m_gpuTimer;
CommandQueueWgpu m_cmd;
StagingBufferWgpu m_uniformBuffers[WEBGPU_NUM_UNIFORM_BUFFERS];
ScratchBufferWgpu m_scratchBuffers[BGFX_CONFIG_MAX_FRAME_LATENCY];
BindStateCacheWgpu m_bindStateCache[BGFX_CONFIG_MAX_FRAME_LATENCY];
uint8_t m_frameIndex;
uint16_t m_numWindows;
FrameBufferHandle m_windows[BGFX_CONFIG_MAX_FRAME_BUFFERS];
IndexBufferWgpu m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS];
VertexBufferWgpu m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS];
ShaderWgpu m_shaders[BGFX_CONFIG_MAX_SHADERS];
ProgramWgpu m_program[BGFX_CONFIG_MAX_PROGRAMS];
TextureWgpu m_textures[BGFX_CONFIG_MAX_TEXTURES];
ReadbackWgpu m_readbacks[BGFX_CONFIG_MAX_TEXTURES];
FrameBufferWgpu m_mainFrameBuffer;
FrameBufferWgpu m_frameBuffers[BGFX_CONFIG_MAX_FRAME_BUFFERS];
VertexLayout m_vertexDecls[BGFX_CONFIG_MAX_VERTEX_LAYOUTS];
UniformRegistry m_uniformReg;
void* m_uniforms[BGFX_CONFIG_MAX_UNIFORMS];
//StateCacheT<BindStateWgpu*> m_bindStateCache;
StateCacheT<RenderPassStateWgpu*> m_renderPassStateCache;
StateCacheT<PipelineStateWgpu*> m_pipelineStateCache;
StateCacheT<SamplerStateWgpu*> m_samplerStateCache;
TextVideoMem m_textVideoMem;
uint8_t m_fsScratch[64 << 10];
uint8_t m_vsScratch[64 << 10];
FrameBufferHandle m_fbh;
bool m_rtMsaa;
Resolution m_resolution;
void* m_capture;
uint32_t m_captureSize;
wgpu::RenderPassEncoder m_renderEncoder;
wgpu::ComputePassEncoder m_computeEncoder;
};
RendererContextI* rendererCreate(const Init& _init)
{
s_renderWgpu = BX_NEW(g_allocator, RendererContextWgpu);
if (!s_renderWgpu->init(_init) )
{
BX_DELETE(g_allocator, s_renderWgpu);
s_renderWgpu = NULL;
}
return s_renderWgpu;
}
void rendererDestroy()
{
s_renderWgpu->shutdown();
BX_DELETE(g_allocator, s_renderWgpu);
s_renderWgpu = NULL;
}
void writeString(bx::WriterI* _writer, const char* _str)
{
bx::write(_writer, _str, (int32_t)bx::strLen(_str) );
}
void ShaderWgpu::create(ShaderHandle _handle, const Memory* _mem)
{
m_handle = _handle;
BX_TRACE("Creating shader %s", getName(_handle));
bx::MemoryReader reader(_mem->data, _mem->size);
bx::ErrorAssert err;
uint32_t magic;
bx::read(&reader, magic, &err);
wgpu::ShaderStage shaderStage;
if (isShaderType(magic, 'C'))
{
shaderStage = wgpu::ShaderStage::Compute;
}
else if (isShaderType(magic, 'F'))
{
shaderStage = wgpu::ShaderStage::Fragment;
}
else if (isShaderType(magic, 'G'))
{
//shaderStage = wgpu::ShaderStage::Geometry;
}
else if (isShaderType(magic, 'V'))
{
shaderStage = wgpu::ShaderStage::Vertex;
}
m_stage = shaderStage;
uint32_t hashIn;
bx::read(&reader, hashIn, &err);
uint32_t hashOut;
if (isShaderVerLess(magic, 6) )
{
hashOut = hashIn;
}
else
{
bx::read(&reader, hashOut, &err);
}
uint16_t count;
bx::read(&reader, count, &err);
m_numPredefined = 0;
m_numUniforms = count;
BX_TRACE("%s Shader consts %d"
, getShaderTypeName(magic)
, count
);
const bool fragment = isShaderType(magic, 'F');
uint8_t fragmentBit = fragment ? kUniformFragmentBit : 0;
BX_ASSERT(!isShaderVerLess(magic, 11), "WebGPU backend supports only shader binary version >= 11");
if (0 < count)
{
for (uint32_t ii = 0; ii < count; ++ii)
{
uint8_t nameSize = 0;
bx::read(&reader, nameSize, &err);
char name[256];
bx::read(&reader, &name, nameSize, &err);
name[nameSize] = '\0';
uint8_t type = 0;
bx::read(&reader, type, &err);
uint8_t num;
bx::read(&reader, num, &err);
uint16_t regIndex;
bx::read(&reader, regIndex, &err);
uint16_t regCount;
bx::read(&reader, regCount, &err);
uint8_t texComponent;
bx::read(&reader, texComponent, &err);
uint8_t texDimension;
bx::read(&reader, texDimension, &err);
uint16_t texFormat = 0;
bx::read(&reader, texFormat, &err);
const char* kind = "invalid";
PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name);
if (PredefinedUniform::Count != predefined)
{
kind = "predefined";
m_predefined[m_numPredefined].m_loc = regIndex;
m_predefined[m_numPredefined].m_count = regCount;
m_predefined[m_numPredefined].m_type = uint8_t(predefined|fragmentBit);
m_numPredefined++;
}
else if (UniformType::End == (~kUniformMask & type))
{
// regCount is used for descriptor type
const bool buffer = idToDescriptorType(regCount) == DescriptorType::StorageBuffer;
const bool readonly = (type & kUniformReadOnlyBit) != 0;
const uint8_t reverseShift = kSpirvBindShift;
const uint8_t stage = regIndex - reverseShift;
m_bindInfo[stage].m_index = m_numBuffers;
m_bindInfo[stage].m_binding = regIndex;
m_bindInfo[stage].m_uniform = { 0 };
m_buffers[m_numBuffers] = wgpu::BindGroupLayoutEntry();
m_buffers[m_numBuffers].binding = regIndex;
m_buffers[m_numBuffers].visibility = shaderStage;
if (buffer)
{
m_buffers[m_numBuffers].buffer.type = readonly
? wgpu::BufferBindingType::ReadOnlyStorage
: wgpu::BufferBindingType::Storage;
}
else
{
m_buffers[m_numBuffers].storageTexture.access = readonly
? wgpu::StorageTextureAccess::ReadOnly
: wgpu::StorageTextureAccess::WriteOnly;
m_buffers[m_numBuffers].storageTexture.format = s_textureFormat[texFormat].m_fmt;
}
m_numBuffers++;
kind = "storage";
}
else if (UniformType::Sampler == (~kUniformMask & type))
{
const UniformRegInfo* info = s_renderWgpu->m_uniformReg.find(name);
BX_ASSERT(NULL != info, "User defined uniform '%s' is not found, it won't be set.", name);
const uint8_t reverseShift = kSpirvBindShift;
const uint8_t stage = regIndex - reverseShift;
m_bindInfo[stage].m_index = m_numSamplers;
m_bindInfo[stage].m_binding = regIndex;
m_bindInfo[stage].m_uniform = info->m_handle;
auto textureDimensionToWgpu = [](TextureDimension::Enum dimension)
{
switch (dimension)
{
case TextureDimension::Dimension1D: return wgpu::TextureViewDimension::e1D;
case TextureDimension::Dimension2D: return wgpu::TextureViewDimension::e2D;
case TextureDimension::Dimension2DArray: return wgpu::TextureViewDimension::e2DArray;
case TextureDimension::DimensionCube: return wgpu::TextureViewDimension::Cube;
case TextureDimension::DimensionCubeArray: return wgpu::TextureViewDimension::CubeArray;
case TextureDimension::Dimension3D: return wgpu::TextureViewDimension::e3D;
default: return wgpu::TextureViewDimension::Undefined;
}
};
auto textureComponentToWgpuSampleType = [](TextureComponentType::Enum componentType)
{
switch (componentType)
{
case TextureComponentType::Float: return wgpu::TextureSampleType::Float;
case TextureComponentType::Int: return wgpu::TextureSampleType::Sint;
case TextureComponentType::Uint: return wgpu::TextureSampleType::Uint;
default: return wgpu::TextureSampleType::Float;
}
};
m_textures[m_numSamplers] = wgpu::BindGroupLayoutEntry();
m_textures[m_numSamplers].binding = regIndex;
m_textures[m_numSamplers].visibility = shaderStage;
m_textures[m_numSamplers].texture.viewDimension = textureDimensionToWgpu(idToTextureDimension(texDimension));
m_textures[m_numSamplers].texture.sampleType = textureComponentToWgpuSampleType(idToTextureComponentType(texComponent));
const bool comparisonSampler = (type & kUniformCompareBit) != 0;
m_samplers[m_numSamplers] = wgpu::BindGroupLayoutEntry();
m_samplers[m_numSamplers].binding = regIndex + kSpirvSamplerShift;
m_samplers[m_numSamplers].visibility = shaderStage;
m_samplers[m_numSamplers].sampler.type = comparisonSampler
? wgpu::SamplerBindingType::Comparison
: wgpu::SamplerBindingType::Filtering
;
m_numSamplers++;
kind = "sampler";
}
else
{
const UniformRegInfo* info = s_renderWgpu->m_uniformReg.find(name);
BX_ASSERT(NULL != info, "User defined uniform '%s' is not found, it won't be set.", name);
if(NULL == m_constantBuffer)
{
m_constantBuffer = UniformBuffer::create(1024);
}
kind = "user";
m_constantBuffer->writeUniformHandle((UniformType::Enum)(type | fragmentBit), regIndex, info->m_handle, regCount);
}
BX_TRACE("\t%s: %s (%s), r.index %3d, r.count %2d, r.texComponent %1d, r.texDimension %1d"
, kind
, name
, getUniformTypeName(UniformType::Enum(type&~kUniformMask) )
, regIndex
, regCount
, texComponent
, texDimension
);
BX_UNUSED(kind);
}
if (NULL != m_constantBuffer)
{
m_constantBuffer->finish();
}
}
uint32_t shaderSize;
bx::read(&reader, shaderSize, &err);
BX_TRACE("Shader body is at %lld size %u remaining %lld", reader.getPos(), shaderSize, reader.remaining());
const uint32_t* code = (const uint32_t*)reader.getDataPtr();
bx::skip(&reader, shaderSize+1);
m_code = (uint32_t*)BX_ALLOC(g_allocator, shaderSize);
m_codeSize = shaderSize;
bx::memCopy(m_code, code, shaderSize);
// TODO (hugoam) delete this
BX_TRACE("First word %08" PRIx32, code[0]);
uint8_t numAttrs = 0;
bx::read(&reader, numAttrs, &err);
m_numAttrs = numAttrs;
bx::memSet(m_attrMask, 0, sizeof(m_attrMask));
bx::memSet(m_attrRemap, UINT8_MAX, sizeof(m_attrRemap));
for(uint8_t ii = 0; ii < numAttrs; ++ii)
{
uint16_t id;
bx::read(&reader, id, &err);
auto toString = [](Attrib::Enum attr)
{
if (attr == Attrib::Position) return "Position";
else if (attr == Attrib::Normal) return "Normal";
else if (attr == Attrib::Tangent) return "Tangent";
else if (attr == Attrib::Bitangent) return "Bitangent";
else if (attr == Attrib::Color0) return "Color0";
else if (attr == Attrib::Color1) return "Color1";
else if (attr == Attrib::Color2) return "Color2";
else if (attr == Attrib::Color3) return "Color3";
else if (attr == Attrib::Indices) return "Indices";
else if (attr == Attrib::Weight) return "Weight";
else if (attr == Attrib::TexCoord0) return "TexCoord0";
else if (attr == Attrib::TexCoord1) return "TexCoord1";
else if (attr == Attrib::TexCoord2) return "TexCoord2";
else if (attr == Attrib::TexCoord3) return "TexCoord3";
else if (attr == Attrib::TexCoord4) return "TexCoord4";
else if (attr == Attrib::TexCoord5) return "TexCoord5";
else if (attr == Attrib::TexCoord6) return "TexCoord6";
else if (attr == Attrib::TexCoord7) return "TexCoord7";
return "Invalid";
};
Attrib::Enum attr = idToAttrib(id);
if(Attrib::Count != attr)
{
m_attrMask[attr] = UINT16_MAX;
m_attrRemap[attr] = ii;
BX_TRACE("\tattrib: %s (%i) at index %i", toString(attr), attr, ii);
}
}
wgpu::ShaderModuleSPIRVDescriptor spirv;
spirv.code = m_code;
spirv.codeSize = shaderSize / 4;
wgpu::ShaderModuleDescriptor desc;
desc.label = getName(_handle);
desc.nextInChain = &spirv;
m_module = s_renderWgpu->m_device.CreateShaderModule(&desc);
BGFX_FATAL(m_module
, bgfx::Fatal::InvalidShader
, "Failed to create %s shader."
, getShaderTypeName(magic)
);
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(hashIn);
murmur.add(hashOut);
murmur.add(code, shaderSize);
murmur.add(numAttrs);
murmur.add(m_attrMask, numAttrs);
m_hash = murmur.end();
auto roundUp = [](auto value, auto multiple)
{
return ((value + multiple - 1) / multiple) * multiple;
};
bx::read(&reader, m_size, &err);
const uint32_t align = kMinBufferOffsetAlignment;
m_gpuSize = uint16_t(bx::strideAlign(m_size, align) );
BX_TRACE("shader size %d (used=%d) (prev=%d)", (int)m_size, (int)m_gpuSize, (int)bx::strideAlign(roundUp(m_size, 4), align));
}
void ProgramWgpu::create(const ShaderWgpu* _vsh, const ShaderWgpu* _fsh)
{
BX_ASSERT(_vsh->m_module, "Vertex shader doesn't exist.");
m_vsh = _vsh;
m_fsh = _fsh;
m_gpuSize = _vsh->m_gpuSize + (_fsh ? _fsh->m_gpuSize : 0);
//BX_ASSERT(NULL != _vsh->m_code, "Vertex shader doesn't exist.");
m_vsh = _vsh;
bx::memCopy(&m_predefined[0], _vsh->m_predefined, _vsh->m_numPredefined * sizeof(PredefinedUniform));
m_numPredefined = _vsh->m_numPredefined;
if(NULL != _fsh)
{
//BX_ASSERT(NULL != _fsh->m_code, "Fragment shader doesn't exist.");
m_fsh = _fsh;
bx::memCopy(&m_predefined[m_numPredefined], _fsh->m_predefined, _fsh->m_numPredefined * sizeof(PredefinedUniform));
m_numPredefined += _fsh->m_numPredefined;
}
wgpu::BindGroupLayoutEntry bindings[2 + BGFX_CONFIG_MAX_TEXTURE_SAMPLERS * 3];
m_numUniforms = 0 + (_vsh->m_size > 0 ? 1 : 0) + (NULL != _fsh && _fsh->m_size > 0 ? 1 : 0);
uint8_t numBindings = 0;
if (_vsh->m_size > 0)
{
bindings[numBindings].binding = kSpirvVertexBinding;
bindings[numBindings].visibility = _vsh->m_stage;
bindings[numBindings].buffer.type = wgpu::BufferBindingType::Uniform;
bindings[numBindings].buffer.hasDynamicOffset = true;
numBindings++;
}
if (NULL != _fsh && _fsh->m_size > 0)
{
bindings[numBindings].binding = kSpirvFragmentBinding;
bindings[numBindings].visibility = wgpu::ShaderStage::Fragment;
bindings[numBindings].buffer.type = wgpu::BufferBindingType::Uniform;
bindings[numBindings].buffer.hasDynamicOffset = true;
numBindings++;
}
uint8_t numSamplers = 0;
for (uint32_t ii = 0; ii < _vsh->m_numSamplers; ++ii)
{
m_textures[ii] = _vsh->m_textures[ii];
m_samplers[ii] = _vsh->m_samplers[ii];
bindings[numBindings++] = _vsh->m_textures[ii];
bindings[numBindings++] = _vsh->m_samplers[ii];
}
numSamplers += _vsh->m_numSamplers;
if (NULL != _fsh)
{
for (uint32_t ii = 0; ii < _fsh->m_numSamplers; ++ii)
{
m_textures[numSamplers + ii] = _fsh->m_textures[ii];
m_samplers[numSamplers + ii] = _fsh->m_samplers[ii];
bindings[numBindings++] = _fsh->m_textures[ii];
bindings[numBindings++] = _fsh->m_samplers[ii];
}
numSamplers += _fsh->m_numSamplers;
}
for (uint8_t stage = 0; stage < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++stage)
{
if (isValid(m_vsh->m_bindInfo[stage].m_uniform))
{
m_bindInfo[stage] = m_vsh->m_bindInfo[stage];
}
else if (NULL != m_fsh && isValid(m_fsh->m_bindInfo[stage].m_uniform))
{
m_bindInfo[stage] = m_fsh->m_bindInfo[stage];
m_bindInfo[stage].m_index += _vsh->m_numSamplers;
}
}
m_numSamplers = numSamplers;
uint8_t numBuffers = 0;
for (uint32_t ii = 0; ii < _vsh->m_numBuffers; ++ii)
{
m_buffers[ii] = _vsh->m_buffers[ii];
bindings[numBindings++] = _vsh->m_buffers[ii];
}
numBuffers += _vsh->m_numBuffers;
if (NULL != _fsh)
{
for (uint32_t ii = 0; ii < _fsh->m_numBuffers; ++ii)
{
m_buffers[numBuffers + ii] = _fsh->m_buffers[ii];
bindings[numBindings++] = _fsh->m_buffers[ii];
}
numBuffers += _fsh->m_numBuffers;
}
m_numBuffers = numBuffers;
BX_ASSERT(m_numUniforms + m_numSamplers * 2 + m_numBuffers == numBindings, "");
wgpu::BindGroupLayoutDescriptor bindGroupDesc;
bindGroupDesc.entryCount = numBindings;
bindGroupDesc.entries = bindings;
m_bindGroupLayout = s_renderWgpu->m_device.CreateBindGroupLayout(&bindGroupDesc);
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(m_numUniforms);
murmur.add(m_textures, sizeof(wgpu::BindGroupLayoutEntry) * numSamplers);
murmur.add(m_samplers, sizeof(wgpu::BindGroupLayoutEntry) * numSamplers);
murmur.add(m_buffers, sizeof(wgpu::BindGroupLayoutEntry) * m_numBuffers);
m_bindGroupLayoutHash = murmur.end();
}
void ProgramWgpu::destroy()
{
m_vsh = NULL;
m_fsh = NULL;
if ( NULL != m_computePS )
{
BX_DELETE(g_allocator, m_computePS);
m_computePS = NULL;
}
}
void BufferWgpu::create(uint32_t _size, void* _data, uint16_t _flags, uint16_t _stride, bool _vertex)
{
BX_UNUSED(_stride);
m_size = _size;
m_flags = _flags;
m_vertex = _vertex;
const uint32_t paddedSize = bx::strideAlign(_size, 4);
bool storage = m_flags & BGFX_BUFFER_COMPUTE_READ_WRITE;
bool indirect = m_flags & BGFX_BUFFER_DRAW_INDIRECT;
wgpu::BufferDescriptor desc;
desc.size = paddedSize;
desc.usage = _vertex ? wgpu::BufferUsage::Vertex : wgpu::BufferUsage::Index;
desc.usage |= (storage || indirect) ? wgpu::BufferUsage::Storage : wgpu::BufferUsage::None;
desc.usage |= indirect ? wgpu::BufferUsage::Indirect : wgpu::BufferUsage::None;
desc.usage |= NULL == _data ? wgpu::BufferUsage::CopyDst : wgpu::BufferUsage::None;
desc.mappedAtCreation = NULL != _data;
m_ptr = s_renderWgpu->m_device.CreateBuffer(&desc);
if(NULL != _data)
{
bx::memCopy(m_ptr.GetMappedRange(), _data, _size);
m_ptr.Unmap();
}
}
void BufferWgpu::update(uint32_t _offset, uint32_t _size, void* _data, bool _discard)
{
wgpu::CommandEncoder& bce = s_renderWgpu->getBlitCommandEncoder();
if (!m_vertex && !_discard)
{
if ( m_dynamic == NULL )
{
m_dynamic = (uint8_t*)BX_ALLOC(g_allocator, m_size);
}
bx::memCopy(m_dynamic + _offset, _data, _size);
uint32_t start = _offset & 4;
uint32_t end = bx::strideAlign(_offset + _size, 4);
wgpu::BufferDescriptor desc;
desc.size = end - start;
desc.usage = wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::CopySrc;
desc.mappedAtCreation = true;
wgpu::Buffer staging = s_renderWgpu->m_device.CreateBuffer(&desc);
bx::memCopy(staging.GetMappedRange(), m_dynamic, end - start);
staging.Unmap();
// TODO pad to 4 bytes
bce.CopyBufferToBuffer(staging, 0, m_ptr, start, end - start);
s_renderWgpu->m_cmd.release(staging);
}
else
{
wgpu::BufferDescriptor desc;
desc.size = _size;
desc.usage = wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::CopySrc;
desc.mappedAtCreation = true;
wgpu::Buffer staging = s_renderWgpu->m_device.CreateBuffer(&desc);
bx::memCopy(staging.GetMappedRange(), _data, _size);
staging.Unmap();
bce.CopyBufferToBuffer(staging, 0, m_ptr, _offset, _size);
s_renderWgpu->m_cmd.release(staging);
}
}
void IndexBufferWgpu::create(uint32_t _size, void* _data, uint16_t _flags)
{
m_format = (_flags & BGFX_BUFFER_INDEX32) != 0
? wgpu::IndexFormat::Uint32
: wgpu::IndexFormat::Uint16;
BufferWgpu::create(_size, _data, _flags);
}
void VertexBufferWgpu::create(uint32_t _size, void* _data, VertexLayoutHandle _layoutHandle, uint16_t _flags)
{
m_layoutHandle = _layoutHandle;
uint16_t stride = isValid(_layoutHandle)
? s_renderWgpu->m_vertexDecls[_layoutHandle.idx].m_stride
: 0
;
BufferWgpu::create(_size, _data, _flags, stride, true);
}
void TextureWgpu::create(TextureHandle _handle, const Memory* _mem, uint64_t _flags, uint8_t _skip)
{
m_handle = _handle;
m_sampler = s_renderWgpu->getSamplerState(uint32_t(_flags) );
bimg::ImageContainer imageContainer;
if (bimg::imageParse(imageContainer, _mem->data, _mem->size) )
{
const bimg::ImageBlockInfo& blockInfo = getBlockInfo(bimg::TextureFormat::Enum(imageContainer.m_format) );
const uint8_t startLod = bx::min<uint8_t>(_skip, imageContainer.m_numMips-1);
bimg::TextureInfo ti;
bimg::imageGetSize(
&ti
, uint16_t(imageContainer.m_width >>startLod)
, uint16_t(imageContainer.m_height>>startLod)
, uint16_t(imageContainer.m_depth >>startLod)
, imageContainer.m_cubeMap
, 1 < imageContainer.m_numMips
, imageContainer.m_numLayers
, imageContainer.m_format
);
ti.numMips = bx::min<uint8_t>(imageContainer.m_numMips-startLod, ti.numMips);
m_flags = _flags;
m_width = ti.width;
m_height = ti.height;
m_depth = ti.depth;
m_numLayers = ti.numLayers;
m_numMips = ti.numMips;
m_numSides = ti.numLayers * (imageContainer.m_cubeMap ? 6 : 1);
m_requestedFormat = TextureFormat::Enum(imageContainer.m_format);
m_textureFormat = getViableTextureFormat(imageContainer);
if (m_requestedFormat == bgfx::TextureFormat::D16)
m_textureFormat = bgfx::TextureFormat::D32F;
const bool compressed = bimg::isCompressed(bimg::TextureFormat::Enum(imageContainer.m_format));
if (compressed)
m_textureFormat = bgfx::TextureFormat::BGRA8;
const bool convert = m_textureFormat != m_requestedFormat;
const uint8_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(m_textureFormat) );
wgpu::TextureDescriptor desc = defaultDescriptor<wgpu::TextureDescriptor>();
//desc.label = getName(_handle);
if (1 < ti.numLayers)
{
if (imageContainer.m_cubeMap)
{
m_type = TextureCube;
desc.dimension = wgpu::TextureDimension::e2D;
}
else
{
m_type = Texture2D;
desc.dimension = wgpu::TextureDimension::e2D;
}
}
else if (imageContainer.m_cubeMap)
{
m_type = TextureCube;
desc.dimension = wgpu::TextureDimension::e2D;
}
else if (1 < imageContainer.m_depth)
{
m_type = Texture3D;
desc.dimension = wgpu::TextureDimension::e3D;
}
else
{
m_type = Texture2D;
desc.dimension = wgpu::TextureDimension::e2D;
}
const uint16_t numSides = ti.numLayers * (imageContainer.m_cubeMap ? 6 : 1);
const uint32_t numSrd = numSides * ti.numMips;
const bool writeOnly = 0 != (_flags&BGFX_TEXTURE_RT_WRITE_ONLY);
const bool computeWrite = 0 != (_flags&BGFX_TEXTURE_COMPUTE_WRITE);
const bool renderTarget = 0 != (_flags&BGFX_TEXTURE_RT_MASK);
const bool srgb = 0 != (_flags&BGFX_TEXTURE_SRGB);
BX_TRACE("Texture %3d: %s (requested: %s), layers %d, %dx%d%s RT[%c], WO[%c], CW[%c], sRGB[%c]"
, this - s_renderWgpu->m_textures
, getName( (TextureFormat::Enum)m_textureFormat)
, getName( (TextureFormat::Enum)m_requestedFormat)
, ti.numLayers
, ti.width
, ti.height
, imageContainer.m_cubeMap ? "x6" : ""
, renderTarget ? 'x' : ' '
, writeOnly ? 'x' : ' '
, computeWrite ? 'x' : ' '
, srgb ? 'x' : ' '
);
const uint32_t msaaQuality = bx::uint32_satsub( (_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT, 1);
const int32_t sampleCount = s_msaa[msaaQuality];
wgpu::TextureFormat format = wgpu::TextureFormat::Undefined;
if (srgb)
{
format = s_textureFormat[m_textureFormat].m_fmtSrgb;
BX_WARN(format != wgpu::TextureFormat::Undefined
, "sRGB not supported for texture format %d"
, m_textureFormat
);
}
if (format == wgpu::TextureFormat::Undefined)
{
// not swizzled and not sRGB, or sRGB unsupported
format = s_textureFormat[m_textureFormat].m_fmt;
}
desc.format = format;
desc.size.width = m_width;
desc.size.height = m_height;
desc.size.depthOrArrayLayers = m_numSides * bx::uint32_max(1,imageContainer.m_depth);
desc.mipLevelCount = m_numMips;
desc.sampleCount = 1;
desc.usage = wgpu::TextureUsage::Sampled;
desc.usage |= wgpu::TextureUsage::CopyDst;
desc.usage |= wgpu::TextureUsage::CopySrc;
if (computeWrite)
{
desc.usage |= wgpu::TextureUsage::Storage;
}
if (renderTarget)
{
desc.usage |= wgpu::TextureUsage::OutputAttachment;
}
m_ptr = s_renderWgpu->m_device.CreateTexture(&desc);
if (sampleCount > 1)
{
desc.sampleCount = sampleCount;
m_ptrMsaa = s_renderWgpu->m_device.CreateTexture(&desc);
}
// decode images
struct ImageInfo
{
uint8_t* data;
uint32_t width;
uint32_t height;
uint32_t depth;
uint32_t pitch;
uint32_t slice;
uint32_t size;
uint8_t mipLevel;
uint8_t layer;
};
ImageInfo* imageInfos = (ImageInfo*)BX_ALLOC(g_allocator, sizeof(ImageInfo) * numSrd);
bx::memSet(imageInfos, 0, sizeof(ImageInfo) * numSrd);
uint32_t alignment = 1; // tightly aligned buffer
uint32_t kk = 0;
for (uint8_t side = 0; side < numSides; ++side)
{
for (uint8_t lod = 0; lod < ti.numMips; ++lod)
{
bimg::ImageMip mip;
if (bimg::imageGetRawData(imageContainer, side, lod + startLod, _mem->data, _mem->size, mip))
{
if (convert)
{
const uint32_t pitch = bx::strideAlign(bx::max<uint32_t>(mip.m_width, 4) * bpp / 8, alignment);
const uint32_t slice = bx::strideAlign(bx::max<uint32_t>(mip.m_height, 4) * pitch, alignment);
const uint32_t size = slice * mip.m_depth;
uint8_t* temp = (uint8_t*)BX_ALLOC(g_allocator, size);
bimg::imageDecodeToBgra8(
g_allocator
, temp
, mip.m_data
, mip.m_width
, mip.m_height
, pitch
, mip.m_format
);
imageInfos[kk].data = temp;
imageInfos[kk].width = mip.m_width;
imageInfos[kk].height = mip.m_height;
imageInfos[kk].depth = mip.m_depth;
imageInfos[kk].pitch = pitch;
imageInfos[kk].slice = slice;
imageInfos[kk].size = size;
imageInfos[kk].mipLevel = lod;
imageInfos[kk].layer = side;
}
else if (compressed)
{
const uint32_t pitch = bx::strideAlign((mip.m_width / blockInfo.blockWidth) * mip.m_blockSize, alignment);
const uint32_t slice = bx::strideAlign((mip.m_height / blockInfo.blockHeight) * pitch, alignment);
const uint32_t size = slice * mip.m_depth;
uint8_t* temp = (uint8_t*)BX_ALLOC(g_allocator, size);
bimg::imageCopy(
temp
, mip.m_height / blockInfo.blockHeight
, (mip.m_width / blockInfo.blockWidth) * mip.m_blockSize
, mip.m_depth
, mip.m_data
, pitch
);
imageInfos[kk].data = temp;
imageInfos[kk].width = mip.m_width;
imageInfos[kk].height = mip.m_height;
imageInfos[kk].depth = mip.m_depth;
imageInfos[kk].pitch = pitch;
imageInfos[kk].slice = slice;
imageInfos[kk].size = size;
imageInfos[kk].mipLevel = lod;
imageInfos[kk].layer = side;
}
else
{
const uint32_t pitch = bx::strideAlign(mip.m_width * mip.m_bpp / 8, alignment);
const uint32_t slice = bx::strideAlign(mip.m_height * pitch, alignment);
const uint32_t size = slice * mip.m_depth;
uint8_t* temp = (uint8_t*)BX_ALLOC(g_allocator, size);
bimg::imageCopy(temp
, mip.m_height
, mip.m_width * mip.m_bpp / 8
, mip.m_depth
, mip.m_data
, pitch
);
imageInfos[kk].data = temp;
imageInfos[kk].width = mip.m_width;
imageInfos[kk].height = mip.m_height;
imageInfos[kk].depth = mip.m_depth;
imageInfos[kk].pitch = pitch;
imageInfos[kk].slice = slice;
imageInfos[kk].size = size;
imageInfos[kk].mipLevel = lod;
imageInfos[kk].layer = side;
}
}
++kk;
}
}
uint32_t totalMemSize = 0;
for (uint32_t ii = 0; ii < numSrd; ++ii)
{
const uint32_t dstpitch = bx::strideAlign(imageInfos[ii].pitch, kMinBufferOffsetAlignment);
totalMemSize += dstpitch * imageInfos[ii].height;
//totalMemSize += imageInfos[ii].size;
}
wgpu::Buffer stagingBuffer;
if (totalMemSize > 0)
{
wgpu::BufferDescriptor staginBufferDesc;
staginBufferDesc.size = totalMemSize;
staginBufferDesc.usage = wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::CopySrc;
staginBufferDesc.mappedAtCreation = true;
stagingBuffer = s_renderWgpu->m_device.CreateBuffer(&staginBufferDesc);
void* stagingData = stagingBuffer.GetMappedRange();
uint64_t offset = 0;
for (uint32_t ii = 0; ii < numSrd; ++ii)
{
const uint32_t dstpitch = bx::strideAlign(imageInfos[ii].pitch, kMinBufferOffsetAlignment);
const uint8_t* src = (uint8_t*)imageInfos[ii].data;
uint8_t* dst = (uint8_t*)stagingData;
for (uint32_t yy = 0; yy < imageInfos[ii].height; ++yy, src += imageInfos[ii].pitch, offset += dstpitch)
{
bx::memCopy(dst + offset, src, imageInfos[ii].pitch);
}
//bx::memCopy(dst + offset, imageInfos[ii].data, imageInfos[ii].size);
//offset += imageInfos[ii].size;
}
stagingBuffer.Unmap();
}
wgpu::ImageCopyBuffer* imageCopyBuffer = (wgpu::ImageCopyBuffer*)BX_ALLOC(g_allocator, sizeof(wgpu::ImageCopyBuffer) * numSrd);
wgpu::ImageCopyTexture* imageCopyTexture = (wgpu::ImageCopyTexture*)BX_ALLOC(g_allocator, sizeof(wgpu::ImageCopyTexture) * numSrd);
wgpu::Extent3D* textureCopySize = (wgpu::Extent3D*)BX_ALLOC(g_allocator, sizeof(wgpu::Extent3D) * numSrd);
uint64_t offset = 0;
for (uint32_t ii = 0; ii < numSrd; ++ii)
{
const uint32_t dstpitch = bx::strideAlign(imageInfos[ii].pitch, kMinBufferOffsetAlignment);
uint32_t idealWidth = bx::max<uint32_t>(1, m_width >> imageInfos[ii].mipLevel);
uint32_t idealHeight = bx::max<uint32_t>(1, m_height >> imageInfos[ii].mipLevel);
BX_PLACEMENT_NEW(&imageCopyBuffer[ii], wgpu::ImageCopyBuffer)();
BX_PLACEMENT_NEW(&imageCopyTexture[ii], wgpu::ImageCopyTexture)();
BX_PLACEMENT_NEW(&textureCopySize[ii], wgpu::Extent3D)();
imageCopyBuffer[ii].buffer = stagingBuffer;
imageCopyBuffer[ii].layout.offset = offset;
imageCopyBuffer[ii].layout.bytesPerRow = dstpitch; // assume that image data are tightly aligned
imageCopyBuffer[ii].layout.rowsPerImage = 0; // assume that image data are tightly aligned
imageCopyTexture[ii].texture = m_ptr;
imageCopyTexture[ii].mipLevel = imageInfos[ii].mipLevel;
imageCopyTexture[ii].origin = { 0, 0, imageInfos[ii].layer };
textureCopySize[ii] = { idealWidth, idealHeight, imageInfos[ii].depth };
offset += dstpitch * imageInfos[ii].height;
//offset += imageInfos[ii].size;
}
if (stagingBuffer)
{
wgpu::CommandEncoder encoder = s_renderWgpu->getBlitCommandEncoder();
//wgpu::CommandEncoder encoder = s_renderWgpu->m_cmd.m_encoder;
for (uint32_t ii = 0; ii < numSrd; ++ii)
{
encoder.CopyBufferToTexture(&imageCopyBuffer[ii], &imageCopyTexture[ii], &textureCopySize[ii]);
}
}
else
{
//VkCommandBuffer commandBuffer = s_renderVK->beginNewCommand();
//setImageMemoryBarrier(
// commandBuffer
// , (m_flags & BGFX_TEXTURE_COMPUTE_WRITE
// ? VK_IMAGE_LAYOUT_GENERAL
// : VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
// )
//);
//s_renderVK->submitCommandAndWait(commandBuffer);
}
//vkFreeMemory(device, stagingDeviceMem, allocatorCb);
//vkDestroy(stagingBuffer);
BX_FREE(g_allocator, imageCopyBuffer);
BX_FREE(g_allocator, imageCopyTexture);
BX_FREE(g_allocator, textureCopySize);
for (uint32_t ii = 0; ii < numSrd; ++ii)
{
BX_FREE(g_allocator, imageInfos[ii].data);
}
BX_FREE(g_allocator, imageInfos);
}
}
void TextureWgpu::update(uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem)
{
const uint32_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(m_textureFormat) );
const uint32_t rectpitch = _rect.m_width*bpp/8;
const uint32_t srcpitch = UINT16_MAX == _pitch ? rectpitch : _pitch;
const uint16_t zz = (m_type == Texture3D) ? _z : _side;
// TODO (hugoam) This won't work for 3D texture arrays, but do we even support that
const bool convert = m_textureFormat != m_requestedFormat;
uint8_t* data = _mem->data;
uint8_t* temp = NULL;
if (convert)
{
temp = (uint8_t*)BX_ALLOC(g_allocator, rectpitch*_rect.m_height);
bimg::imageDecodeToBgra8(
g_allocator
, temp
, data
, _rect.m_width
, _rect.m_height
, srcpitch
, bimg::TextureFormat::Enum(m_requestedFormat)
);
data = temp;
}
const uint32_t dstpitch = bx::strideAlign(rectpitch, kMinBufferOffsetAlignment);
wgpu::BufferDescriptor desc;
desc.size = dstpitch * _rect.m_height;
desc.usage = wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::CopySrc;
desc.mappedAtCreation = true;
wgpu::Buffer staging = s_renderWgpu->m_device.CreateBuffer(&desc);
const uint8_t* src = (uint8_t*)data;
uint8_t* dst = (uint8_t*)staging.GetMappedRange();
uint64_t offset = 0;
for (uint32_t yy = 0; yy < _rect.m_height; ++yy, src += srcpitch, offset += dstpitch)
{
const uint32_t size = bx::strideAlign(rectpitch, 4);
bx::memCopy(dst + offset, src, size);
}
staging.Unmap();
wgpu::ImageCopyBuffer srcView;
srcView.buffer = staging;
srcView.layout.bytesPerRow = dstpitch;
srcView.layout.rowsPerImage = 0;
wgpu::ImageCopyTexture destView;
destView.texture = m_ptr;
destView.mipLevel = _mip;
destView.origin = { _rect.m_x, _rect.m_y, zz };
wgpu::Extent3D destExtent = { _rect.m_width, _rect.m_height, _depth };
//region.imageSubresource.aspectMask = m_vkTextureAspect;
wgpu::CommandEncoder encoder = s_renderWgpu->getBlitCommandEncoder();
//wgpu::CommandEncoder encoder = s_renderWgpu->m_cmd.m_encoder;
encoder.CopyBufferToTexture(&srcView, &destView, &destExtent);
//wgpu::CommandBuffer copy = encoder.Finish();
//wgpu::Queue queue = s_renderWgpu->m_queue;
//queue.Submit(1, &copy);
//staging.Destroy();
if (NULL != temp)
{
BX_FREE(g_allocator, temp);
}
}
void BindStateWgpu::clear()
{
m_bindGroup = NULL;
}
void StagingBufferWgpu::create(uint32_t _size, bool mapped)
{
m_size = _size;
wgpu::BufferDescriptor desc;
desc.size = _size;
desc.usage = wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc;
desc.mappedAtCreation = mapped;
m_buffer = s_renderWgpu->m_device.CreateBuffer(&desc);
if (mapped)
{
m_data = m_buffer.GetMappedRange();
}
else
{
map();
}
}
void StagingBufferWgpu::map()
{
auto ready = [](WGPUBufferMapAsyncStatus status, void* userdata)
{
StagingBufferWgpu* staging = static_cast<StagingBufferWgpu*>(userdata);
BX_WARN(status == WGPUBufferMapAsyncStatus_Success, "Failed mapping staging buffer (size %d) for writing with error %d", staging->m_size, status);
if (status == WGPUBufferMapAsyncStatus_Success)
{
void* data = staging->m_buffer.GetMappedRange();
staging->mapped(data);
}
};
m_buffer.MapAsync(wgpu::MapMode::Write, 0, m_size, ready, this);
}
void StagingBufferWgpu::unmap()
{
m_data = NULL;
m_buffer.Unmap();
}
void StagingBufferWgpu::destroy()
{
m_buffer = NULL;
}
void StagingBufferWgpu::mapped(void* _data)
{
m_data = _data;
}
void ScratchBufferWgpu::create(uint32_t _size)
{
m_offset = 0;
m_size = _size;
wgpu::BufferDescriptor desc;
desc.size = BGFX_CONFIG_MAX_DRAW_CALLS * 128;
desc.usage = wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::Uniform;
m_buffer = s_renderWgpu->m_device.CreateBuffer(&desc);
}
void ScratchBufferWgpu::destroy()
{
}
void ScratchBufferWgpu::begin()
{
for (uint8_t ii = 0; ii < WEBGPU_NUM_UNIFORM_BUFFERS; ++ii)
{
if (NULL != s_renderWgpu->m_uniformBuffers[ii].m_data)
{
m_staging = &s_renderWgpu->m_uniformBuffers[ii];
break;
}
}
BX_ASSERT(NULL != m_staging, "No available mapped uniform buffer");
}
uint32_t ScratchBufferWgpu::write(void* data, uint64_t _size, uint64_t _offset)
{
BX_ASSERT(nullptr != m_staging, "Cannot write uniforms outside of begin()/submit() calls");
BX_ASSERT(m_size > m_offset + _offset, "Out-of-bounds scratch buffer write");
uint32_t offset = m_offset;
bx::memCopy((void*)((uint8_t*)m_staging->m_data + offset), data, _size);
m_offset += _offset;
return offset;
}
uint32_t ScratchBufferWgpu::write(void* data, uint64_t _size)
{
BX_ASSERT(nullptr != m_staging, "Cannot write uniforms outside of begin()/submit() calls");
BX_ASSERT(m_size > m_offset + _size, "Out-of-bounds scratch buffer write");
uint32_t offset = m_offset;
bx::memCopy((void*)((uint8_t*)m_staging->m_data + offset), data, _size);
m_offset += _size;
return offset;
}
void ScratchBufferWgpu::submit()
{
m_staging->unmap();
if (m_offset != 0)
{
wgpu::CommandEncoder& bce = s_renderWgpu->getStagingEncoder();
bce.CopyBufferToBuffer(m_staging->m_buffer, 0, m_buffer, 0, m_offset);
}
}
void ScratchBufferWgpu::release()
{
m_staging->map();
m_staging = NULL;
m_offset = 0;
}
void BindStateCacheWgpu::create() //(uint32_t _maxBindGroups)
{
//m_maxBindStates = 1024; // _maxBindStates;
m_currentBindState = 0;
}
void BindStateCacheWgpu::destroy()
{
reset();
}
void BindStateCacheWgpu::reset()
{
for (size_t i = 0; i < m_currentBindState; ++i)
{
m_bindStates[i] = {};
}
m_currentBindState = 0;
}
wgpu::TextureView TextureWgpu::getTextureMipLevel(int _mip)
{
if (_mip >= 0
&& _mip < m_numMips
&& m_ptr)
{
if (!m_ptrMips[_mip])
{
wgpu::TextureViewDescriptor desc;
desc.baseMipLevel = _mip;
desc.mipLevelCount = 1;
desc.format = s_textureFormat[m_textureFormat].m_fmt;
if (TextureCube == m_type)
{
//desc.dimension = MTLTextureType2DArray;
desc.baseArrayLayer = 0;
desc.arrayLayerCount = m_numLayers * 6;
}
else
{
desc.baseArrayLayer = 0;
desc.arrayLayerCount = m_numLayers;
}
m_ptrMips[_mip] = m_ptr.CreateView(&desc);
}
return m_ptrMips[_mip];
}
return wgpu::TextureView();
}
void SwapChainWgpu::init(wgpu::Device _device, void* _nwh, uint32_t _width, uint32_t _height)
{
BX_UNUSED(_nwh);
wgpu::SwapChainDescriptor desc;
desc.usage = wgpu::TextureUsage::OutputAttachment;
desc.width = _width;
desc.height = _height;
#if !BX_PLATFORM_EMSCRIPTEN
m_impl = createSwapChain(_device, _nwh);
desc.presentMode = wgpu::PresentMode::Immediate;
desc.format = wgpu::TextureFormat::RGBA8Unorm;
desc.implementation = reinterpret_cast<uint64_t>(&m_impl);
m_swapChain = _device.CreateSwapChain(nullptr, &desc);
#else
wgpu::SurfaceDescriptorFromCanvasHTMLSelector canvasDesc{};
canvasDesc.selector = "#canvas";
wgpu::SurfaceDescriptor surfDesc{};
surfDesc.nextInChain = &canvasDesc;
wgpu::Surface surface = wgpu::Instance().CreateSurface(&surfDesc);
desc.presentMode = wgpu::PresentMode::Fifo;
desc.format = wgpu::TextureFormat::BGRA8Unorm;
m_swapChain = _device.CreateSwapChain(surface, &desc);
#endif
m_colorFormat = desc.format;
m_depthFormat = wgpu::TextureFormat::Depth24PlusStencil8;
}
void SwapChainWgpu::resize(FrameBufferWgpu& _frameBuffer, uint32_t _width, uint32_t _height, uint32_t _flags)
{
BX_TRACE("SwapChainWgpu::resize");
const int32_t sampleCount = s_msaa[(_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT];
wgpu::TextureFormat format = (_flags & BGFX_RESET_SRGB_BACKBUFFER)
#ifdef DAWN_ENABLE_BACKEND_VULKAN
? wgpu::TextureFormat::BGRA8UnormSrgb
: wgpu::TextureFormat::BGRA8Unorm
#else
? wgpu::TextureFormat::RGBA8UnormSrgb
: wgpu::TextureFormat::RGBA8Unorm
#endif
;
#if !BX_PLATFORM_EMSCRIPTEN
m_swapChain.Configure(format, wgpu::TextureUsage::OutputAttachment, _width, _height);
#endif
m_colorFormat = format;
m_depthFormat = wgpu::TextureFormat::Depth24PlusStencil8;
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(1);
murmur.add((uint32_t)m_colorFormat);
murmur.add((uint32_t)m_depthFormat);
murmur.add((uint32_t)sampleCount);
_frameBuffer.m_pixelFormatHash = murmur.end();
wgpu::TextureDescriptor desc;
desc.dimension = wgpu::TextureDimension::e2D;
desc.size.width = _width;
desc.size.height = _height;
desc.size.depthOrArrayLayers = 1;
desc.mipLevelCount = 1;
desc.sampleCount = sampleCount;
desc.usage = wgpu::TextureUsage::OutputAttachment;
if (m_backBufferDepth)
{
m_backBufferDepth.Destroy();
}
desc.format = wgpu::TextureFormat::Depth24PlusStencil8;
m_backBufferDepth = s_renderWgpu->m_device.CreateTexture(&desc);
if (sampleCount > 1)
{
if (m_backBufferColorMsaa)
{
m_backBufferColorMsaa.Destroy();
}
desc.format = m_colorFormat;
desc.sampleCount = sampleCount;
m_backBufferColorMsaa = s_renderWgpu->m_device.CreateTexture(&desc);
}
}
void SwapChainWgpu::flip()
{
m_drawable = m_swapChain.GetCurrentTextureView();
}
wgpu::TextureView SwapChainWgpu::current()
{
if (!m_drawable)
m_drawable = m_swapChain.GetCurrentTextureView();
return m_drawable;
}
void FrameBufferWgpu::create(uint8_t _num, const Attachment* _attachment)
{
m_swapChain = NULL;
m_denseIdx = UINT16_MAX;
m_num = 0;
m_width = 0;
m_height = 0;
for (uint32_t ii = 0; ii < _num; ++ii)
{
const Attachment& at = _attachment[ii];
TextureHandle handle = at.handle;
if (isValid(handle) )
{
const TextureWgpu& texture = s_renderWgpu->m_textures[handle.idx];
if (0 == m_width)
{
m_width = texture.m_width;
m_height = texture.m_height;
}
if (bimg::isDepth(bimg::TextureFormat::Enum(texture.m_textureFormat) ) )
{
m_depthHandle = handle;
m_depthAttachment = at;
}
else
{
m_colorHandle[m_num] = handle;
m_colorAttachment[m_num] = at;
m_num++;
}
}
}
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(m_num);
for (uint32_t ii = 0; ii < m_num; ++ii)
{
const TextureWgpu& texture = s_renderWgpu->m_textures[m_colorHandle[ii].idx];
murmur.add(uint32_t(s_textureFormat[texture.m_textureFormat].m_fmt) );
}
if (!isValid(m_depthHandle) )
{
murmur.add(uint32_t(wgpu::TextureFormat::Undefined) );
}
else
{
const TextureWgpu& depthTexture = s_renderWgpu->m_textures[m_depthHandle.idx];
murmur.add(uint32_t(s_textureFormat[depthTexture.m_textureFormat].m_fmt) );
}
murmur.add(1); // SampleCount
m_pixelFormatHash = murmur.end();
}
bool FrameBufferWgpu::create(uint16_t _denseIdx, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _format, TextureFormat::Enum _depthFormat)
{
BX_UNUSED(_format, _depthFormat);
m_swapChain = BX_NEW(g_allocator, SwapChainWgpu);
m_num = 0;
m_width = _width;
m_height = _height;
m_nwh = _nwh;
m_denseIdx = _denseIdx;
m_swapChain->init(s_renderWgpu->m_device, _nwh, _width, _height);
m_swapChain->resize(*this, _width, _height, 0);
return m_swapChain->m_swapChain != NULL;
}
void FrameBufferWgpu::postReset()
{
}
uint16_t FrameBufferWgpu::destroy()
{
if (NULL != m_swapChain)
{
BX_DELETE(g_allocator, m_swapChain);
m_swapChain = NULL;
}
m_num = 0;
m_nwh = NULL;
m_depthHandle.idx = kInvalidHandle;
uint16_t denseIdx = m_denseIdx;
m_denseIdx = UINT16_MAX;
return denseIdx;
}
void CommandQueueWgpu::init(wgpu::Queue _queue)
{
m_queue = _queue;
#if BGFX_CONFIG_MULTITHREADED
//m_framesSemaphore.post(BGFX_CONFIG_MAX_FRAME_LATENCY);
#endif
}
void CommandQueueWgpu::shutdown()
{
finish(true);
}
void CommandQueueWgpu::beginRender()
{
m_renderEncoder = s_renderWgpu->m_device.CreateCommandEncoder();
}
void CommandQueueWgpu::beginStaging()
{
m_stagingEncoder = s_renderWgpu->m_device.CreateCommandEncoder();
}
inline void commandBufferFinishedCallback(void* _data)
{
#if BGFX_CONFIG_MULTITHREADED
CommandQueueWgpu* queue = (CommandQueueWgpu*)_data;
if (queue)
{
//queue->m_framesSemaphore.post();
}
#else
BX_UNUSED(_data);
#endif
}
void CommandQueueWgpu::kick(bool _endFrame, bool _waitForFinish)
{
if (m_renderEncoder)
{
if (_endFrame)
{
m_releaseWriteIndex = (m_releaseWriteIndex + 1) % BGFX_CONFIG_MAX_FRAME_LATENCY;
//m_encoder.addCompletedHandler(commandBufferFinishedCallback, this);
}
if (m_stagingEncoder)
{
wgpu::CommandBuffer commands = m_stagingEncoder.Finish();
m_queue.Submit(1, &commands);
}
wgpu::CommandBuffer commands = m_renderEncoder.Finish();
m_queue.Submit(1, &commands);
if (_waitForFinish)
{
#if BGFX_CONFIG_MULTITHREADED
//m_framesSemaphore.post();
#endif
}
m_stagingEncoder = NULL;
m_renderEncoder = NULL;
}
}
void CommandQueueWgpu::finish(bool _finishAll)
{
if (_finishAll)
{
uint32_t count = m_renderEncoder
? 2
: 3
;
for (uint32_t ii = 0; ii < count; ++ii)
{
consume();
}
#if BGFX_CONFIG_MULTITHREADED
//m_framesSemaphore.post(count);
#endif
}
else
{
consume();
}
}
void CommandQueueWgpu::release(wgpu::Buffer _buffer)
{
m_release[m_releaseWriteIndex].push_back(_buffer);
}
void CommandQueueWgpu::consume()
{
#if BGFX_CONFIG_MULTITHREADED
//m_framesSemaphore.wait();
#endif
m_releaseReadIndex = (m_releaseReadIndex + 1) % BGFX_CONFIG_MAX_FRAME_LATENCY;
for (wgpu::Buffer& buffer : m_release[m_releaseReadIndex])
{
buffer.Destroy();
}
m_release[m_releaseReadIndex].clear();
}
void TimerQueryWgpu::init()
{
m_frequency = bx::getHPFrequency();
}
void TimerQueryWgpu::shutdown()
{
}
uint32_t TimerQueryWgpu::begin(uint32_t _resultIdx, uint32_t _frameNum)
{
BX_UNUSED(_resultIdx);
BX_UNUSED(_frameNum);
return 0;
}
void TimerQueryWgpu::end(uint32_t _idx)
{
BX_UNUSED(_idx);
}
#if 0
static void setTimestamp(void* _data)
{
*( (int64_t*)_data) = bx::getHPCounter();
}
#endif
void TimerQueryWgpu::addHandlers(wgpu::CommandBuffer& _commandBuffer)
{
BX_UNUSED(_commandBuffer);
while (0 == m_control.reserve(1) )
{
m_control.consume(1);
}
//uint32_t offset = m_control.m_current;
//_commandBuffer.addScheduledHandler(setTimestamp, &m_result[offset].m_begin);
//_commandBuffer.addCompletedHandler(setTimestamp, &m_result[offset].m_end);
m_control.commit(1);
}
bool TimerQueryWgpu::get()
{
if (0 != m_control.available() )
{
uint32_t offset = m_control.m_read;
m_begin = m_result[offset].m_begin;
m_end = m_result[offset].m_end;
m_elapsed = m_end - m_begin;
m_control.consume(1);
return true;
}
return false;
}
void RendererContextWgpu::submitBlit(BlitState& _bs, uint16_t _view)
{
if (!_bs.hasItem(_view) )
{
return;
}
endEncoding();
wgpu::CommandEncoder& bce = getBlitCommandEncoder();
while (_bs.hasItem(_view) )
{
const BlitItem& blit = _bs.advance();
const TextureWgpu& src = m_textures[blit.m_src.idx];
const TextureWgpu& dst = m_textures[blit.m_dst.idx];
bool readBack = !!(dst.m_flags & BGFX_TEXTURE_READ_BACK);
wgpu::ImageCopyTexture srcView;
srcView.texture = src.m_ptr;
srcView.origin = { blit.m_srcX, blit.m_srcY, blit.m_srcZ };
srcView.mipLevel = blit.m_srcMip;
wgpu::ImageCopyTexture dstView;
dstView.texture = dst.m_ptr;
dstView.origin = { blit.m_dstX, blit.m_dstY, blit.m_dstZ };
dstView.mipLevel = blit.m_dstMip;
if (blit.m_depth == 0)
{
wgpu::Extent3D copyExtent = { blit.m_width, blit.m_height, 1 };
bce.CopyTextureToTexture(&srcView, &dstView, &copyExtent);
}
else
{
wgpu::Extent3D copyExtent = { blit.m_width, blit.m_height, blit.m_depth };
bce.CopyTextureToTexture(&srcView, &dstView, &copyExtent);
}
if (readBack)
{
//bce..synchronizeTexture(dst.m_ptr, 0, blit.m_dstMip);
}
}
//if (bce)
//{
// bce.endEncoding();
// bce = 0;
//}
}
void RendererContextWgpu::submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter)
{
if(_render->m_capture)
{
renderDocTriggerCapture();
}
m_cmd.finish(false);
if (!m_cmd.m_renderEncoder)
{
m_cmd.beginRender();
}
BGFX_WEBGPU_PROFILER_BEGIN_LITERAL("rendererSubmit", kColorFrame);
int64_t timeBegin = bx::getHPCounter();
int64_t captureElapsed = 0;
//m_gpuTimer.addHandlers(m_encoder);
updateResolution(_render->m_resolution);
m_frameIndex = 0; // (m_frameIndex + 1) % BGFX_CONFIG_MAX_FRAME_LATENCY;
ScratchBufferWgpu& scratchBuffer = m_scratchBuffers[m_frameIndex];
scratchBuffer.begin();
BindStateCacheWgpu& bindStates = m_bindStateCache[m_frameIndex];
bindStates.reset();
if (0 < _render->m_iboffset)
{
BGFX_PROFILER_SCOPE("bgfx/Update transient index buffer", kColorResource);
TransientIndexBuffer* ib = _render->m_transientIb;
m_indexBuffers[ib->handle.idx].update(0, bx::strideAlign(_render->m_iboffset,4), ib->data, true);
}
if (0 < _render->m_vboffset)
{
BGFX_PROFILER_SCOPE("bgfx/Update transient vertex buffer", kColorResource);
TransientVertexBuffer* vb = _render->m_transientVb;
m_vertexBuffers[vb->handle.idx].update(0, bx::strideAlign(_render->m_vboffset,4), vb->data, true);
}
_render->sort();
RenderDraw currentState;
currentState.clear();
currentState.m_stateFlags = BGFX_STATE_NONE;
currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE);
RenderBind currentBind;
currentBind.clear();
static ViewState viewState;
viewState.reset(_render);
uint32_t blendFactor = 0;
//bool wireframe = !!(_render->m_debug&BGFX_DEBUG_WIREFRAME);
ProgramHandle currentProgram = BGFX_INVALID_HANDLE;
uint32_t currentBindHash = 0;
uint32_t currentBindLayoutHash = 0;
BindStateWgpu* previousBindState = NULL;
SortKey key;
uint16_t view = UINT16_MAX;
FrameBufferHandle fbh = { BGFX_CONFIG_MAX_FRAME_BUFFERS };
BlitState bs(_render);
const uint64_t primType = 0;
uint8_t primIndex = uint8_t(primType >> BGFX_STATE_PT_SHIFT);
PrimInfo prim = s_primInfo[primIndex];
const uint32_t maxComputeBindings = g_caps.limits.maxComputeBindings;
// TODO store this
static wgpu::RenderPassEncoder rce;
PipelineStateWgpu* currentPso = NULL;
bool wasCompute = false;
bool viewHasScissor = false;
Rect viewScissorRect;
viewScissorRect.clear();
uint32_t statsNumPrimsSubmitted[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumPrimsRendered[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumInstances[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumDrawIndirect[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumIndices = 0;
uint32_t statsKeyType[2] = {};
Profiler<TimerQueryWgpu> profiler(
_render
, m_gpuTimer
, s_viewName
);
if (0 == (_render->m_debug & BGFX_DEBUG_IFH))
{
viewState.m_rect = _render->m_view[0].m_rect;
int32_t numItems = _render->m_numRenderItems;
for (int32_t item = 0; item < numItems;)
{
const uint64_t encodedKey = _render->m_sortKeys[item];
const bool isCompute = key.decode(encodedKey, _render->m_viewRemap);
statsKeyType[isCompute]++;
const bool viewChanged = 0
|| key.m_view != view
|| item == numItems
;
const uint32_t itemIdx = _render->m_sortValues[item];
const RenderItem& renderItem = _render->m_renderItem[itemIdx];
const RenderBind& renderBind = _render->m_renderItemBind[itemIdx];
++item;
if (viewChanged
|| (!isCompute && wasCompute))
{
view = key.m_view;
currentProgram = BGFX_INVALID_HANDLE;
if (item > 1)
{
profiler.end();
}
BGFX_WEBGPU_PROFILER_END();
setViewType(view, " ");
BGFX_WEBGPU_PROFILER_BEGIN(view, kColorView);
profiler.begin(view);
viewState.m_rect = _render->m_view[view].m_rect;
submitBlit(bs, view);
if (!isCompute)
{
const Rect& scissorRect = _render->m_view[view].m_scissor;
viewHasScissor = !scissorRect.isZero();
viewScissorRect = viewHasScissor ? scissorRect : viewState.m_rect;
Clear& clr = _render->m_view[view].m_clear;
Rect viewRect = viewState.m_rect;
bool clearWithRenderPass = false;
if (!m_renderEncoder
|| fbh.idx != _render->m_view[view].m_fbh.idx)
{
endEncoding();
fbh = _render->m_view[view].m_fbh;
uint32_t width = m_resolution.width;
uint32_t height = m_resolution.height;
if (isValid(fbh))
{
FrameBufferWgpu& frameBuffer = m_frameBuffers[fbh.idx];
width = frameBuffer.m_width;
height = frameBuffer.m_height;
}
clearWithRenderPass = true
&& 0 == viewRect.m_x
&& 0 == viewRect.m_y
&& width == viewRect.m_width
&& height == viewRect.m_height
;
rce = renderPass(_render, fbh, clearWithRenderPass, clr, s_viewName[view]);
}
else if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION))
{
rce.PopDebugGroup();
}
if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION))
{
rce.PushDebugGroup(s_viewName[view]);
}
//rce.setTriangleFillMode(wireframe ? MTLTriangleFillModeLines : MTLTriangleFillModeFill);
const Rect& rect = viewState.m_rect;
rce.SetViewport(rect.m_x, rect.m_y, rect.m_width, rect.m_height, 0.0f, 1.0f);
rce.SetScissorRect(rect.m_x, rect.m_y, rect.m_width, rect.m_height);
if (BGFX_CLEAR_NONE != (clr.m_flags & BGFX_CLEAR_MASK)
&& !clearWithRenderPass)
{
clearQuad(_clearQuad, viewState.m_rect, clr, _render->m_colorPalette);
}
}
}
if (isCompute)
{
if (!wasCompute)
{
wasCompute = true;
endEncoding();
rce = NULL;
setViewType(view, "C");
BGFX_WEBGPU_PROFILER_END();
BGFX_WEBGPU_PROFILER_BEGIN(view, kColorCompute);
m_computeEncoder = m_cmd.m_renderEncoder.BeginComputePass();
}
else if (viewChanged)
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION))
{
m_computeEncoder.PopDebugGroup();
}
endEncoding();
m_computeEncoder = m_cmd.m_renderEncoder.BeginComputePass();
}
if (viewChanged)
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION))
{
s_viewName[view][3] = L'C';
m_computeEncoder.PushDebugGroup(s_viewName[view]);
s_viewName[view][3] = L' ';
}
}
const RenderCompute& compute = renderItem.compute;
bool programChanged = false;
bool constantsChanged = compute.m_uniformBegin < compute.m_uniformEnd;
rendererUpdateUniforms(this, _render->m_uniformBuffer[compute.m_uniformIdx], compute.m_uniformBegin, compute.m_uniformEnd);
if (key.m_program.idx != currentProgram.idx)
{
currentProgram = key.m_program;
currentPso = getComputePipelineState(currentProgram);
if (NULL == currentPso)
{
currentProgram = BGFX_INVALID_HANDLE;
continue;
}
m_computeEncoder.SetPipeline(currentPso->m_cps);
programChanged =
constantsChanged = true;
}
if (!isValid(currentProgram)
|| NULL == currentPso)
BX_WARN(false, "Invalid program / No PSO");
const ProgramWgpu& program = m_program[currentProgram.idx];
if (constantsChanged)
{
UniformBuffer* vcb = program.m_vsh->m_constantBuffer;
if (NULL != vcb)
{
commit(*vcb);
}
}
viewState.setPredefined<4>(this, view, program, _render, compute);
uint32_t numOffset = 0;
uint32_t offsets[2] = { 0, 0 };
if (program.m_vsh->m_size > 0)
{
offsets[numOffset++] = scratchBuffer.write(m_vsScratch, program.m_vsh->m_gpuSize);
}
BindStateWgpu& bindState = allocAndFillBindState(program, bindStates, scratchBuffer, renderBind);
bindProgram(m_computeEncoder, program, bindState, numOffset, offsets);
if (isValid(compute.m_indirectBuffer))
{
const VertexBufferWgpu& vb = m_vertexBuffers[compute.m_indirectBuffer.idx];
uint32_t numDrawIndirect = UINT16_MAX == compute.m_numIndirect
? vb.m_size/BGFX_CONFIG_DRAW_INDIRECT_STRIDE
: compute.m_numIndirect
;
uint32_t args = compute.m_startIndirect * BGFX_CONFIG_DRAW_INDIRECT_STRIDE;
for (uint32_t ii = 0; ii < numDrawIndirect; ++ii)
{
m_computeEncoder.DispatchIndirect(
vb.m_ptr
, args
);
args += BGFX_CONFIG_DRAW_INDIRECT_STRIDE;
}
}
else
{
m_computeEncoder.Dispatch(compute.m_numX, compute.m_numY, compute.m_numZ);
}
continue;
}
bool resetState = viewChanged || wasCompute;
if (wasCompute)
{
wasCompute = false;
currentProgram = BGFX_INVALID_HANDLE;
setViewType(view, " ");
BGFX_WEBGPU_PROFILER_END();
BGFX_WEBGPU_PROFILER_BEGIN(view, kColorDraw);
}
const RenderDraw& draw = renderItem.draw;
// TODO (hugoam)
//const bool depthWrite = !!(BGFX_STATE_WRITE_Z & draw.m_stateFlags);
const uint64_t newFlags = draw.m_stateFlags;
uint64_t changedFlags = currentState.m_stateFlags ^ draw.m_stateFlags;
currentState.m_stateFlags = newFlags;
const uint64_t newStencil = draw.m_stencil;
uint64_t changedStencil = (currentState.m_stencil ^ draw.m_stencil) & BGFX_STENCIL_FUNC_REF_MASK;
currentState.m_stencil = newStencil;
if (resetState)
{
wasCompute = false;
currentState.clear();
currentState.m_scissor = !draw.m_scissor;
changedFlags = BGFX_STATE_MASK;
changedStencil = packStencil(BGFX_STENCIL_MASK, BGFX_STENCIL_MASK);
currentState.m_stateFlags = newFlags;
currentState.m_stencil = newStencil;
currentBind.clear();
currentProgram = BGFX_INVALID_HANDLE;
const uint64_t pt = newFlags & BGFX_STATE_PT_MASK;
primIndex = uint8_t(pt >> BGFX_STATE_PT_SHIFT);
}
if (prim.m_type != s_primInfo[primIndex].m_type)
{
prim = s_primInfo[primIndex];
}
uint16_t scissor = draw.m_scissor;
if (currentState.m_scissor != scissor)
{
currentState.m_scissor = scissor;
if (UINT16_MAX == scissor)
{
if (viewHasScissor)
{
const auto& r = viewScissorRect;
rce.SetScissorRect(r.m_x, r.m_y, r.m_width, r.m_height);
}
else
{ // can't disable: set to view rect
const auto& r = viewState.m_rect;
rce.SetScissorRect(r.m_x, r.m_y, r.m_width, r.m_height);
}
}
else
{
Rect scissorRect;
scissorRect.setIntersect(viewScissorRect, _render->m_frameCache.m_rectCache.m_cache[scissor]);
const auto& r = scissorRect;
if (r.m_width == 0 || r.m_height == 0)
{
continue;
}
rce.SetScissorRect(r.m_x, r.m_y, r.m_width, r.m_height);
}
}
if (0 != changedStencil)
{
const uint32_t fstencil = unpackStencil(0, draw.m_stencil);
const uint32_t ref = (fstencil & BGFX_STENCIL_FUNC_REF_MASK) >> BGFX_STENCIL_FUNC_REF_SHIFT;
rce.SetStencilReference(ref);
}
if ((0 | BGFX_STATE_PT_MASK) & changedFlags)
{
const uint64_t pt = newFlags & BGFX_STATE_PT_MASK;
primIndex = uint8_t(pt >> BGFX_STATE_PT_SHIFT);
if (prim.m_type != s_primInfo[primIndex].m_type)
{
prim = s_primInfo[primIndex];
}
}
if (blendFactor != draw.m_rgba
&& !(newFlags & BGFX_STATE_BLEND_INDEPENDENT))
{
const uint32_t rgba = draw.m_rgba;
float rr = ((rgba >> 24)) / 255.0f;
float gg = ((rgba >> 16) & 0xff) / 255.0f;
float bb = ((rgba >> 8) & 0xff) / 255.0f;
float aa = ((rgba) & 0xff) / 255.0f;
wgpu::Color color = { rr, gg, bb, aa };
rce.SetBlendColor(&color);
blendFactor = draw.m_rgba;
}
bool programChanged = false;
bool constantsChanged = draw.m_uniformBegin < draw.m_uniformEnd;
rendererUpdateUniforms(this, _render->m_uniformBuffer[draw.m_uniformIdx], draw.m_uniformBegin, draw.m_uniformEnd);
bool vertexStreamChanged = hasVertexStreamChanged(currentState, draw);
if (key.m_program.idx != currentProgram.idx
|| vertexStreamChanged
|| (0
| BGFX_STATE_BLEND_MASK
| BGFX_STATE_BLEND_EQUATION_MASK
| BGFX_STATE_WRITE_RGB
| BGFX_STATE_WRITE_A
| BGFX_STATE_BLEND_INDEPENDENT
| BGFX_STATE_MSAA
| BGFX_STATE_BLEND_ALPHA_TO_COVERAGE
) & changedFlags
|| ((blendFactor != draw.m_rgba) && !!(newFlags & BGFX_STATE_BLEND_INDEPENDENT)))
{
currentProgram = key.m_program;
currentState.m_streamMask = draw.m_streamMask;
currentState.m_instanceDataBuffer.idx = draw.m_instanceDataBuffer.idx;
currentState.m_instanceDataOffset = draw.m_instanceDataOffset;
currentState.m_instanceDataStride = draw.m_instanceDataStride;
const VertexLayout* decls[BGFX_CONFIG_MAX_VERTEX_STREAMS];
uint32_t numVertices = draw.m_numVertices;
uint8_t numStreams = 0;
for (uint32_t idx = 0, streamMask = draw.m_streamMask
; 0 != streamMask
; streamMask >>= 1, idx += 1, ++numStreams
)
{
const uint32_t ntz = bx::uint32_cnttz(streamMask);
streamMask >>= ntz;
idx += ntz;
currentState.m_stream[idx].m_layoutHandle = draw.m_stream[idx].m_layoutHandle;
currentState.m_stream[idx].m_handle = draw.m_stream[idx].m_handle;
currentState.m_stream[idx].m_startVertex = draw.m_stream[idx].m_startVertex;
const uint16_t handle = draw.m_stream[idx].m_handle.idx;
const VertexBufferWgpu& vb = m_vertexBuffers[handle];
const uint16_t decl = isValid(draw.m_stream[idx].m_layoutHandle)
? draw.m_stream[idx].m_layoutHandle.idx
: vb.m_layoutHandle.idx;
const VertexLayout& vertexDecl = m_vertexDecls[decl];
const uint32_t stride = vertexDecl.m_stride;
decls[numStreams] = &vertexDecl;
numVertices = bx::uint32_min(UINT32_MAX == draw.m_numVertices
? vb.m_size / stride
: draw.m_numVertices
, numVertices
);
const uint32_t offset = draw.m_stream[idx].m_startVertex * stride;
rce.SetVertexBuffer(idx, vb.m_ptr, offset);
}
if (!isValid(currentProgram))
{
continue;
}
else
{
currentPso = NULL;
if (0 < numStreams)
{
currentPso = getPipelineState(
newFlags
, newStencil
, draw.m_rgba
, fbh
, numStreams
, decls
, draw.isIndex16()
, currentProgram
, uint8_t(draw.m_instanceDataStride / 16)
);
}
if (NULL == currentPso)
{
currentProgram = BGFX_INVALID_HANDLE;
continue;
}
rce.SetPipeline(currentPso->m_rps);
}
if (isValid(draw.m_instanceDataBuffer))
{
const VertexBufferWgpu& inst = m_vertexBuffers[draw.m_instanceDataBuffer.idx];
rce.SetVertexBuffer(numStreams/*+1*/, inst.m_ptr, draw.m_instanceDataOffset);
}
programChanged =
constantsChanged = true;
}
if (isValid(currentProgram))
{
const ProgramWgpu& program = m_program[currentProgram.idx];
if (constantsChanged)
{
UniformBuffer* vcb = program.m_vsh->m_constantBuffer;
if (NULL != vcb)
{
commit(*vcb);
}
}
if (constantsChanged)
{
UniformBuffer* fcb = program.m_fsh->m_constantBuffer;
if (NULL != fcb)
{
commit(*fcb);
}
}
viewState.setPredefined<4>(this, view, program, _render, draw);
bool hasPredefined = 0 < program.m_numPredefined;
uint32_t numOffset = 0;
uint32_t offsets[2] = { 0, 0 };
if (constantsChanged
|| hasPredefined)
{
//viewState.setPredefined<4>(this, view, program, _render, draw, programChanged || viewChanged);
const uint32_t vsize = program.m_vsh->m_gpuSize;
const uint32_t fsize = (NULL != program.m_fsh ? program.m_fsh->m_gpuSize : 0);
if (program.m_vsh->m_size > 0)
{
offsets[numOffset++] = scratchBuffer.write(m_vsScratch, vsize);
}
if (fsize > 0)
{
offsets[numOffset++] = scratchBuffer.write(m_fsScratch, fsize);
}
}
uint32_t bindHash = bx::hash<bx::HashMurmur2A>(renderBind.m_bind, sizeof(renderBind.m_bind));
if (currentBindHash != bindHash
|| currentBindLayoutHash != program.m_bindGroupLayoutHash)
{
currentBindHash = bindHash;
currentBindLayoutHash = program.m_bindGroupLayoutHash;
previousBindState = &bindStates.m_bindStates[bindStates.m_currentBindState];
allocAndFillBindState(program, bindStates, scratchBuffer, renderBind);
}
BindStateWgpu& bindState = bindStates.m_bindStates[bindStates.m_currentBindState-1];
bindProgram(rce, program, bindState, numOffset, offsets);
}
if (0 != currentState.m_streamMask)
{
uint32_t numVertices = draw.m_numVertices;
if (UINT32_MAX == numVertices)
{
const VertexBufferWgpu& vb = m_vertexBuffers[currentState.m_stream[0].m_handle.idx];
uint16_t decl = !isValid(vb.m_layoutHandle) ? draw.m_stream[0].m_layoutHandle.idx : vb.m_layoutHandle.idx;
const VertexLayout& vertexDecl = m_vertexDecls[decl];
numVertices = vb.m_size/vertexDecl.m_stride;
}
uint32_t numIndices = 0;
uint32_t numPrimsSubmitted = 0;
uint32_t numInstances = 0;
uint32_t numPrimsRendered = 0;
uint32_t numDrawIndirect = 0;
if (isValid(draw.m_indirectBuffer) )
{
const VertexBufferWgpu& vb = m_vertexBuffers[draw.m_indirectBuffer.idx];
if (isValid(draw.m_indexBuffer) )
{
const IndexBufferWgpu& ib = m_indexBuffers[draw.m_indexBuffer.idx];
numDrawIndirect = UINT16_MAX == draw.m_numIndirect
? vb.m_size/BGFX_CONFIG_DRAW_INDIRECT_STRIDE
: draw.m_numIndirect
;
for (uint32_t ii = 0; ii < numDrawIndirect; ++ii)
{
rce.SetIndexBuffer(ib.m_ptr, ib.m_format, 0);
rce.DrawIndexedIndirect(vb.m_ptr, (draw.m_startIndirect + ii)* BGFX_CONFIG_DRAW_INDIRECT_STRIDE);
}
}
else
{
numDrawIndirect = UINT16_MAX == draw.m_numIndirect
? vb.m_size/BGFX_CONFIG_DRAW_INDIRECT_STRIDE
: draw.m_numIndirect
;
for (uint32_t ii = 0; ii < numDrawIndirect; ++ii)
{
rce.DrawIndirect(vb.m_ptr, (draw.m_startIndirect + ii)* BGFX_CONFIG_DRAW_INDIRECT_STRIDE);
}
}
}
else
{
if (isValid(draw.m_indexBuffer) )
{
const IndexBufferWgpu& ib = m_indexBuffers[draw.m_indexBuffer.idx];
const uint32_t indexSize = draw.isIndex16() ? 2 : 4;
if (UINT32_MAX == draw.m_numIndices)
{
numIndices = ib.m_size/indexSize;
numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
rce.SetIndexBuffer(ib.m_ptr, ib.m_format, 0);
rce.DrawIndexed(numIndices, draw.m_numInstances, 0, 0, 0);
}
else if (prim.m_min <= draw.m_numIndices)
{
numIndices = draw.m_numIndices;
numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
rce.SetIndexBuffer(ib.m_ptr, ib.m_format, 0);
rce.DrawIndexed(numIndices, numInstances, draw.m_startIndex, 0, 0);
}
}
else
{
numPrimsSubmitted = numVertices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
rce.Draw(numVertices, draw.m_numInstances, 0, 0);
}
}
statsNumPrimsSubmitted[primIndex] += numPrimsSubmitted;
statsNumPrimsRendered[primIndex] += numPrimsRendered;
statsNumInstances[primIndex] += numInstances;
statsNumDrawIndirect[primIndex] += numDrawIndirect;
statsNumIndices += numIndices;
}
}
if (wasCompute)
{
invalidateCompute();
setViewType(view, "C");
BGFX_WEBGPU_PROFILER_END();
BGFX_WEBGPU_PROFILER_BEGIN(view, kColorCompute);
}
submitBlit(bs, BGFX_CONFIG_MAX_VIEWS);
if (0 < _render->m_numRenderItems)
{
captureElapsed = -bx::getHPCounter();
capture();
rce = m_renderEncoder;
captureElapsed += bx::getHPCounter();
profiler.end();
}
}
if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION) )
{
if (0 < _render->m_numRenderItems)
{
rce.PopDebugGroup();
}
}
BGFX_WEBGPU_PROFILER_END();
int64_t timeEnd = bx::getHPCounter();
int64_t frameTime = timeEnd - timeBegin;
static int64_t min = frameTime;
static int64_t max = frameTime;
min = bx::min<int64_t>(min, frameTime);
max = bx::max<int64_t>(max, frameTime);
static uint32_t maxGpuLatency = 0;
static double maxGpuElapsed = 0.0f;
double elapsedGpuMs = 0.0;
do
{
double toGpuMs = 1000.0 / double(m_gpuTimer.m_frequency);
elapsedGpuMs = m_gpuTimer.m_elapsed * toGpuMs;
maxGpuElapsed = elapsedGpuMs > maxGpuElapsed ? elapsedGpuMs : maxGpuElapsed;
}
while (m_gpuTimer.get() );
maxGpuLatency = bx::uint32_imax(maxGpuLatency, m_gpuTimer.m_control.available()-1);
const int64_t timerFreq = bx::getHPFrequency();
Stats& perfStats = _render->m_perfStats;
perfStats.cpuTimeBegin = timeBegin;
perfStats.cpuTimeEnd = timeEnd;
perfStats.cpuTimerFreq = timerFreq;
perfStats.gpuTimeBegin = m_gpuTimer.m_begin;
perfStats.gpuTimeEnd = m_gpuTimer.m_end;
perfStats.gpuTimerFreq = m_gpuTimer.m_frequency;
perfStats.numDraw = statsKeyType[0];
perfStats.numCompute = statsKeyType[1];
perfStats.numBlit = _render->m_numBlitItems;
perfStats.maxGpuLatency = maxGpuLatency;
perfStats.gpuFrameNum = result.m_frameNum;
bx::memCopy(perfStats.numPrims, statsNumPrimsRendered, sizeof(perfStats.numPrims) );
perfStats.gpuMemoryMax = -INT64_MAX;
perfStats.gpuMemoryUsed = -INT64_MAX;
//rce.setTriangleFillMode(MTLTriangleFillModeFill);
if (_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) )
{
rce = renderPass(_render, BGFX_INVALID_HANDLE, false, Clear());
if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION))
{
rce.PushDebugGroup("debugstats");
}
TextVideoMem& tvm = m_textVideoMem;
static int64_t next = timeEnd;
if (timeEnd >= next)
{
next = timeEnd + timerFreq;
double freq = double(timerFreq);
double toMs = 1000.0/freq;
tvm.clear();
uint16_t pos = 0;
tvm.printf(0, pos++, BGFX_CONFIG_DEBUG ? 0x8c : 0x8f
, " %s / " BX_COMPILER_NAME
" / " BX_CPU_NAME
" / " BX_ARCH_NAME
" / " BX_PLATFORM_NAME
" / Version 1.%d.%d (commit: " BGFX_REV_SHA1 ")"
, getRendererName()
, BGFX_API_VERSION
, BGFX_REV_NUMBER
);
pos = 10;
tvm.printf(10, pos++, 0x8b, " Frame: %7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS "
, double(frameTime)*toMs
, double(min)*toMs
, double(max)*toMs
, freq/frameTime
);
const uint32_t msaa = (m_resolution.reset&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT;
tvm.printf(10, pos++, 0x8b, " Reset flags: [%c] vsync, [%c] MSAAx%d, [%c] MaxAnisotropy "
, !!(m_resolution.reset&BGFX_RESET_VSYNC) ? '\xfe' : ' '
, 0 != msaa ? '\xfe' : ' '
, 1<<msaa
, !!(m_resolution.reset&BGFX_RESET_MAXANISOTROPY) ? '\xfe' : ' '
);
double elapsedCpuMs = double(frameTime)*toMs;
tvm.printf(10, pos++, 0x8b, " Submitted: %4d (draw %4d, compute %4d) / CPU %3.4f [ms] %c GPU %3.4f [ms] (latency %d)"
, _render->m_numRenderItems
, statsKeyType[0]
, statsKeyType[1]
, elapsedCpuMs
, elapsedCpuMs > maxGpuElapsed ? '>' : '<'
, maxGpuElapsed
, maxGpuLatency
);
maxGpuLatency = 0;
maxGpuElapsed = 0.0;
for (uint32_t ii = 0; ii < Topology::Count; ++ii)
{
tvm.printf(10, pos++, 0x8b, " %10s: %7d (#inst: %5d), submitted: %7d"
, getName(Topology::Enum(ii) )
, statsNumPrimsRendered[ii]
, statsNumInstances[ii]
, statsNumPrimsSubmitted[ii]
);
}
tvm.printf(10, pos++, 0x8b, " Indices: %7d ", statsNumIndices);
// tvm.printf(10, pos++, 0x8b, " Uniform size: %7d, Max: %7d ", _render->m_uniformEnd, _render->m_uniformMax);
tvm.printf(10, pos++, 0x8b, " DVB size: %7d ", _render->m_vboffset);
tvm.printf(10, pos++, 0x8b, " DIB size: %7d ", _render->m_iboffset);
pos++;
double captureMs = double(captureElapsed)*toMs;
tvm.printf(10, pos++, 0x8b, " Capture: %3.4f [ms]", captureMs);
uint8_t attr[2] = { 0x8c, 0x8a };
uint8_t attrIndex = _render->m_waitSubmit < _render->m_waitRender;
tvm.printf(10, pos++, attr[attrIndex &1], " Submit wait: %3.4f [ms]", _render->m_waitSubmit*toMs);
tvm.printf(10, pos++, attr[(attrIndex+1)&1], " Render wait: %3.4f [ms]", _render->m_waitRender*toMs);
min = frameTime;
max = frameTime;
}
blit(this, _textVideoMemBlitter, tvm);
rce = m_renderEncoder;
if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION))
{
rce.PopDebugGroup();
}
}
else if (_render->m_debug & BGFX_DEBUG_TEXT)
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION))
{
rce.PushDebugGroup("debugtext");
}
blit(this, _textVideoMemBlitter, _render->m_textVideoMem);
rce = m_renderEncoder;
if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION))
{
rce.PopDebugGroup();
}
}
endEncoding();
scratchBuffer.submit();
m_cmd.kick(true);
scratchBuffer.release();
#if !BX_PLATFORM_EMSCRIPTEN
for (uint32_t ii = 0, num = m_numWindows; ii < num; ++ii)
{
FrameBufferWgpu& frameBuffer = ii == 0 ? m_mainFrameBuffer : m_frameBuffers[m_windows[ii].idx];
if (NULL != frameBuffer.m_swapChain
&& frameBuffer.m_swapChain->m_drawable)
{
SwapChainWgpu& swapChain = *frameBuffer.m_swapChain;
swapChain.m_swapChain.Present();
}
}
#endif
}
} /* namespace webgpu */ } // namespace bgfx
#else
namespace bgfx { namespace webgpu
{
RendererContextI* rendererCreate(const Init& _init)
{
BX_UNUSED(_init);
return NULL;
}
void rendererDestroy()
{
}
} /* namespace webgpu */ } // namespace bgfx
#endif // BGFX_CONFIG_RENDERER_WEBGPU