Files
bgfx/src/vertexlayout.cpp
Бранимир Караџић 83dfadf673 Happy New Year!
2024-01-14 01:56:36 -08:00

818 lines
20 KiB
C++

/*
* Copyright 2011-2024 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bgfx/blob/master/LICENSE
*/
#include <bx/debug.h>
#include <bx/hash.h>
#include <bx/readerwriter.h>
#include <bx/sort.h>
#include <bx/string.h>
#include <bx/uint32_t.h>
#include "vertexlayout.h"
namespace bgfx
{
static const uint8_t s_attribTypeSizeD3D1x[AttribType::Count][4] =
{
{ 1, 2, 4, 4 }, // Uint8
{ 4, 4, 4, 4 }, // Uint10
{ 2, 4, 8, 8 }, // Int16
{ 2, 4, 8, 8 }, // Half
{ 4, 8, 12, 16 }, // Float
};
static const uint8_t s_attribTypeSizeGl[AttribType::Count][4] =
{
{ 1, 2, 4, 4 }, // Uint8
{ 4, 4, 4, 4 }, // Uint10
{ 2, 4, 6, 8 }, // Int16
{ 2, 4, 6, 8 }, // Half
{ 4, 8, 12, 16 }, // Float
};
static const uint8_t (*s_attribTypeSize[])[AttribType::Count][4] =
{
&s_attribTypeSizeD3D1x, // Noop
&s_attribTypeSizeD3D1x, // Agc
&s_attribTypeSizeD3D1x, // Direct3D11
&s_attribTypeSizeD3D1x, // Direct3D12
&s_attribTypeSizeD3D1x, // Gnm
&s_attribTypeSizeGl, // Metal
&s_attribTypeSizeGl, // Nvn
&s_attribTypeSizeGl, // OpenGLES
&s_attribTypeSizeGl, // OpenGL
&s_attribTypeSizeD3D1x, // Vulkan
&s_attribTypeSizeD3D1x, // Count
};
BX_STATIC_ASSERT(BX_COUNTOF(s_attribTypeSize) == RendererType::Count+1);
void initAttribTypeSizeTable(RendererType::Enum _type)
{
s_attribTypeSize[0] = s_attribTypeSize[_type];
s_attribTypeSize[RendererType::Count] = s_attribTypeSize[_type];
}
VertexLayout::VertexLayout()
: m_stride(0)
{
// BK - struct need to have ctor to qualify as non-POD data.
// Need this to catch programming errors when serializing struct.
}
VertexLayout& VertexLayout::begin(RendererType::Enum _renderer)
{
m_hash = _renderer; // use hash to store renderer type while building VertexLayout.
m_stride = 0;
bx::memSet(m_attributes, 0xff, sizeof(m_attributes) );
bx::memSet(m_offset, 0, sizeof(m_offset) );
return *this;
}
void VertexLayout::end()
{
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(m_attributes, sizeof(m_attributes) );
murmur.add(m_offset, sizeof(m_offset) );
murmur.add(m_stride);
m_hash = murmur.end();
}
VertexLayout& VertexLayout::add(Attrib::Enum _attrib, uint8_t _num, AttribType::Enum _type, bool _normalized, bool _asInt)
{
const uint16_t encodedNorm = (_normalized&1)<<7;
const uint16_t encodedType = (_type&7)<<3;
const uint16_t encodedNum = (_num-1)&3;
const uint16_t encodeAsInt = (_asInt&(!!"\x1\x1\x1\x0\x0"[_type]) )<<8;
m_attributes[_attrib] = encodedNorm|encodedType|encodedNum|encodeAsInt;
m_offset[_attrib] = m_stride;
m_stride += (*s_attribTypeSize[m_hash])[_type][_num-1];
return *this;
}
VertexLayout& VertexLayout::skip(uint8_t _num)
{
m_stride += _num;
return *this;
}
void VertexLayout::decode(Attrib::Enum _attrib, uint8_t& _num, AttribType::Enum& _type, bool& _normalized, bool& _asInt) const
{
uint16_t val = m_attributes[_attrib];
_num = (val&3)+1;
_type = AttribType::Enum( (val>>3)&7);
_normalized = !!(val&(1<<7) );
_asInt = !!(val&(1<<8) );
}
static const bool s_attribTypeIsFloat[] =
{
false, // Uint8
false, // Uint10
false, // Int16
true, // Half
true, // Float
};
BX_STATIC_ASSERT(BX_COUNTOF(s_attribTypeIsFloat) == AttribType::Count);
bool isFloat(AttribType::Enum _type)
{
return s_attribTypeIsFloat[_type];
}
static const char* s_attrName[] =
{
"P", "Attrib::Position",
"N", "Attrib::Normal",
"T", "Attrib::Tangent",
"B", "Attrib::Bitangent",
"C0", "Attrib::Color0",
"C1", "Attrib::Color1",
"C2", "Attrib::Color2",
"C3", "Attrib::Color3",
"I", "Attrib::Indices",
"W", "Attrib::Weights",
"T0", "Attrib::TexCoord0",
"T1", "Attrib::TexCoord1",
"T2", "Attrib::TexCoord2",
"T3", "Attrib::TexCoord3",
"T4", "Attrib::TexCoord4",
"T5", "Attrib::TexCoord5",
"T6", "Attrib::TexCoord6",
"T7", "Attrib::TexCoord7",
};
BX_STATIC_ASSERT(BX_COUNTOF(s_attrName) == Attrib::Count*2);
const char* getAttribNameShort(Attrib::Enum _attr)
{
return s_attrName[_attr*2+0];
}
const char* getAttribName(Attrib::Enum _attr)
{
return s_attrName[_attr*2+1];
}
struct AttribToId
{
Attrib::Enum attr;
uint16_t id;
};
static AttribToId s_attribToId[] =
{
// NOTICE:
// Attrib must be in order how it appears in Attrib::Enum! id is
// unique and should not be changed if new Attribs are added.
{ Attrib::Position, 0x0001 },
{ Attrib::Normal, 0x0002 },
{ Attrib::Tangent, 0x0003 },
{ Attrib::Bitangent, 0x0004 },
{ Attrib::Color0, 0x0005 },
{ Attrib::Color1, 0x0006 },
{ Attrib::Color2, 0x0018 },
{ Attrib::Color3, 0x0019 },
{ Attrib::Indices, 0x000e },
{ Attrib::Weight, 0x000f },
{ Attrib::TexCoord0, 0x0010 },
{ Attrib::TexCoord1, 0x0011 },
{ Attrib::TexCoord2, 0x0012 },
{ Attrib::TexCoord3, 0x0013 },
{ Attrib::TexCoord4, 0x0014 },
{ Attrib::TexCoord5, 0x0015 },
{ Attrib::TexCoord6, 0x0016 },
{ Attrib::TexCoord7, 0x0017 },
};
BX_STATIC_ASSERT(BX_COUNTOF(s_attribToId) == Attrib::Count);
Attrib::Enum idToAttrib(uint16_t id)
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_attribToId); ++ii)
{
if (s_attribToId[ii].id == id)
{
return s_attribToId[ii].attr;
}
}
return Attrib::Count;
}
uint16_t attribToId(Attrib::Enum _attr)
{
return s_attribToId[_attr].id;
}
struct AttribTypeToId
{
AttribType::Enum type;
uint16_t id;
};
static AttribTypeToId s_attribTypeToId[] =
{
// NOTICE:
// AttribType must be in order how it appears in AttribType::Enum!
// id is unique and should not be changed if new AttribTypes are
// added.
{ AttribType::Uint8, 0x0001 },
{ AttribType::Uint10, 0x0005 },
{ AttribType::Int16, 0x0002 },
{ AttribType::Half, 0x0003 },
{ AttribType::Float, 0x0004 },
};
BX_STATIC_ASSERT(BX_COUNTOF(s_attribTypeToId) == AttribType::Count);
AttribType::Enum idToAttribType(uint16_t id)
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_attribTypeToId); ++ii)
{
if (s_attribTypeToId[ii].id == id)
{
return s_attribTypeToId[ii].type;
}
}
return AttribType::Count;
}
uint16_t attribTypeToId(AttribType::Enum _attr)
{
return s_attribTypeToId[_attr].id;
}
int32_t write(bx::WriterI* _writer, const VertexLayout& _layout, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
int32_t total = 0;
uint8_t numAttrs = 0;
for (uint32_t attr = 0; attr < Attrib::Count; ++attr)
{
numAttrs += UINT16_MAX == _layout.m_attributes[attr] ? 0 : 1;
}
total += bx::write(_writer, numAttrs, _err);
total += bx::write(_writer, _layout.m_stride, _err);
for (uint32_t attr = 0; attr < Attrib::Count; ++attr)
{
if (UINT16_MAX != _layout.m_attributes[attr])
{
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_layout.decode(Attrib::Enum(attr), num, type, normalized, asInt);
total += bx::write(_writer, _layout.m_offset[attr], _err);
total += bx::write(_writer, s_attribToId[attr].id, _err);
total += bx::write(_writer, num, _err);
total += bx::write(_writer, s_attribTypeToId[type].id, _err);
total += bx::write(_writer, normalized, _err);
total += bx::write(_writer, asInt, _err);
}
}
return total;
}
int32_t read(bx::ReaderI* _reader, VertexLayout& _layout, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
int32_t total = 0;
uint8_t numAttrs;
total += bx::read(_reader, numAttrs, _err);
uint16_t stride;
total += bx::read(_reader, stride, _err);
if (!_err->isOk() )
{
return total;
}
_layout.begin();
for (uint32_t ii = 0; ii < numAttrs; ++ii)
{
uint16_t offset;
total += bx::read(_reader, offset, _err);
uint16_t attribId = 0;
total += bx::read(_reader, attribId, _err);
uint8_t num;
total += bx::read(_reader, num, _err);
uint16_t attribTypeId;
total += bx::read(_reader, attribTypeId, _err);
bool normalized;
total += bx::read(_reader, normalized, _err);
bool asInt;
total += bx::read(_reader, asInt, _err);
if (!_err->isOk() )
{
return total;
}
Attrib::Enum attr = idToAttrib(attribId);
AttribType::Enum type = idToAttribType(attribTypeId);
if (Attrib::Count != attr
&& AttribType::Count != type)
{
_layout.add(attr, num, type, normalized, asInt);
_layout.m_offset[attr] = offset;
}
}
_layout.end();
_layout.m_stride = stride;
return total;
}
void vertexPack(const float _input[4], bool _inputNormalized, Attrib::Enum _attr, const VertexLayout& _layout, void* _data, uint32_t _index)
{
if (!_layout.has(_attr) )
{
return;
}
uint32_t stride = _layout.getStride();
uint8_t* data = (uint8_t*)_data + _index*stride + _layout.getOffset(_attr);
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_layout.decode(_attr, num, type, normalized, asInt);
switch (type)
{
default:
case AttribType::Uint8:
{
uint8_t* packed = (uint8_t*)data;
if (_inputNormalized)
{
if (asInt)
{
switch (num)
{
default: *packed++ = uint8_t(*_input++ * 127.0f + 128.0f); [[fallthrough]];
case 3: *packed++ = uint8_t(*_input++ * 127.0f + 128.0f); [[fallthrough]];
case 2: *packed++ = uint8_t(*_input++ * 127.0f + 128.0f); [[fallthrough]];
case 1: *packed++ = uint8_t(*_input++ * 127.0f + 128.0f);
}
}
else
{
switch (num)
{
default: *packed++ = uint8_t(*_input++ * 255.0f); [[fallthrough]];
case 3: *packed++ = uint8_t(*_input++ * 255.0f); [[fallthrough]];
case 2: *packed++ = uint8_t(*_input++ * 255.0f); [[fallthrough]];
case 1: *packed++ = uint8_t(*_input++ * 255.0f);
}
}
}
else
{
switch (num)
{
default: *packed++ = uint8_t(*_input++); [[fallthrough]];
case 3: *packed++ = uint8_t(*_input++); [[fallthrough]];
case 2: *packed++ = uint8_t(*_input++); [[fallthrough]];
case 1: *packed++ = uint8_t(*_input++);
}
}
}
break;
case AttribType::Uint10:
{
uint32_t packed = 0;
if (_inputNormalized)
{
if (asInt)
{
switch (num)
{
default: [[fallthrough]];
case 3: packed |= uint32_t(*_input++ * 511.0f + 512.0f); [[fallthrough]];
case 2: packed <<= 10; packed |= uint32_t(*_input++ * 511.0f + 512.0f); [[fallthrough]];
case 1: packed <<= 10; packed |= uint32_t(*_input++ * 511.0f + 512.0f);
}
}
else
{
switch (num)
{
default: [[fallthrough]];
case 3: packed |= uint32_t(*_input++ * 1023.0f); [[fallthrough]];
case 2: packed <<= 10; packed |= uint32_t(*_input++ * 1023.0f); [[fallthrough]];
case 1: packed <<= 10; packed |= uint32_t(*_input++ * 1023.0f);
}
}
}
else
{
switch (num)
{
default: [[fallthrough]];
case 3: packed |= uint32_t(*_input++); [[fallthrough]];
case 2: packed <<= 10; packed |= uint32_t(*_input++); [[fallthrough]];
case 1: packed <<= 10; packed |= uint32_t(*_input++);
}
}
*(uint32_t*)data = packed;
}
break;
case AttribType::Int16:
{
int16_t* packed = (int16_t*)data;
if (_inputNormalized)
{
if (asInt)
{
switch (num)
{
default: *packed++ = int16_t(*_input++ * 32767.0f); [[fallthrough]];
case 3: *packed++ = int16_t(*_input++ * 32767.0f); [[fallthrough]];
case 2: *packed++ = int16_t(*_input++ * 32767.0f); [[fallthrough]];
case 1: *packed++ = int16_t(*_input++ * 32767.0f);
}
}
else
{
switch (num)
{
default: *packed++ = int16_t(*_input++ * 65535.0f - 32768.0f); [[fallthrough]];
case 3: *packed++ = int16_t(*_input++ * 65535.0f - 32768.0f); [[fallthrough]];
case 2: *packed++ = int16_t(*_input++ * 65535.0f - 32768.0f); [[fallthrough]];
case 1: *packed++ = int16_t(*_input++ * 65535.0f - 32768.0f);
}
}
}
else
{
switch (num)
{
default: *packed++ = int16_t(*_input++); [[fallthrough]];
case 3: *packed++ = int16_t(*_input++); [[fallthrough]];
case 2: *packed++ = int16_t(*_input++); [[fallthrough]];
case 1: *packed++ = int16_t(*_input++);
}
}
}
break;
case AttribType::Half:
{
uint16_t* packed = (uint16_t*)data;
switch (num)
{
default: *packed++ = bx::halfFromFloat(*_input++); [[fallthrough]];
case 3: *packed++ = bx::halfFromFloat(*_input++); [[fallthrough]];
case 2: *packed++ = bx::halfFromFloat(*_input++); [[fallthrough]];
case 1: *packed++ = bx::halfFromFloat(*_input++);
}
}
break;
case AttribType::Float:
bx::memCopy(data, _input, num*sizeof(float) );
break;
}
}
void vertexUnpack(float _output[4], Attrib::Enum _attr, const VertexLayout& _layout, const void* _data, uint32_t _index)
{
if (!_layout.has(_attr) )
{
bx::memSet(_output, 0, 4*sizeof(float) );
return;
}
uint32_t stride = _layout.getStride();
uint8_t* data = (uint8_t*)_data + _index*stride + _layout.getOffset(_attr);
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_layout.decode(_attr, num, type, normalized, asInt);
switch (type)
{
default:
case AttribType::Uint8:
{
uint8_t* packed = (uint8_t*)data;
if (asInt)
{
switch (num)
{
default: *_output++ = (float(*packed++) - 128.0f)*1.0f/127.0f; [[fallthrough]];
case 3: *_output++ = (float(*packed++) - 128.0f)*1.0f/127.0f; [[fallthrough]];
case 2: *_output++ = (float(*packed++) - 128.0f)*1.0f/127.0f; [[fallthrough]];
case 1: *_output++ = (float(*packed++) - 128.0f)*1.0f/127.0f;
}
}
else
{
switch (num)
{
default: *_output++ = float(*packed++)*1.0f/255.0f; [[fallthrough]];
case 3: *_output++ = float(*packed++)*1.0f/255.0f; [[fallthrough]];
case 2: *_output++ = float(*packed++)*1.0f/255.0f; [[fallthrough]];
case 1: *_output++ = float(*packed++)*1.0f/255.0f;
}
}
}
break;
case AttribType::Uint10:
{
uint32_t packed = *(uint32_t*)data;
if (asInt)
{
switch (num)
{
default: [[fallthrough]];
case 3: *_output++ = (float(packed & 0x3ff) - 512.0f)*1.0f/511.0f; packed >>= 10; [[fallthrough]];
case 2: *_output++ = (float(packed & 0x3ff) - 512.0f)*1.0f/511.0f; packed >>= 10; [[fallthrough]];
case 1: *_output++ = (float(packed & 0x3ff) - 512.0f)*1.0f/511.0f;
}
}
else
{
switch (num)
{
default: [[fallthrough]];
case 3: *_output++ = float(packed & 0x3ff)*1.0f/1023.0f; packed >>= 10; [[fallthrough]];
case 2: *_output++ = float(packed & 0x3ff)*1.0f/1023.0f; packed >>= 10; [[fallthrough]];
case 1: *_output++ = float(packed & 0x3ff)*1.0f/1023.0f;
}
}
}
break;
case AttribType::Int16:
{
int16_t* packed = (int16_t*)data;
if (asInt)
{
switch (num)
{
default: *_output++ = float(*packed++)*1.0f/32767.0f; [[fallthrough]];
case 3: *_output++ = float(*packed++)*1.0f/32767.0f; [[fallthrough]];
case 2: *_output++ = float(*packed++)*1.0f/32767.0f; [[fallthrough]];
case 1: *_output++ = float(*packed++)*1.0f/32767.0f;
}
}
else
{
switch (num)
{
default: *_output++ = (float(*packed++) + 32768.0f)*1.0f/65535.0f; [[fallthrough]];
case 3: *_output++ = (float(*packed++) + 32768.0f)*1.0f/65535.0f; [[fallthrough]];
case 2: *_output++ = (float(*packed++) + 32768.0f)*1.0f/65535.0f; [[fallthrough]];
case 1: *_output++ = (float(*packed++) + 32768.0f)*1.0f/65535.0f;
}
}
}
break;
case AttribType::Half:
{
uint16_t* packed = (uint16_t*)data;
switch (num)
{
default: *_output++ = bx::halfToFloat(*packed++); [[fallthrough]];
case 3: *_output++ = bx::halfToFloat(*packed++); [[fallthrough]];
case 2: *_output++ = bx::halfToFloat(*packed++); [[fallthrough]];
case 1: *_output++ = bx::halfToFloat(*packed++);
}
}
break;
case AttribType::Float:
bx::memCopy(_output, data, num*sizeof(float) );
_output += num;
break;
}
switch (num)
{
case 1: *_output++ = 0.0f; [[fallthrough]];
case 2: *_output++ = 0.0f; [[fallthrough]];
case 3: *_output++ = 0.0f; [[fallthrough]];
default: break;
}
}
void vertexConvert(const VertexLayout& _destLayout, void* _destData, const VertexLayout& _srcLayout, const void* _srcData, uint32_t _num)
{
if (_destLayout.m_hash == _srcLayout.m_hash)
{
bx::memCopy(_destData, _srcData, _srcLayout.getSize(_num) );
return;
}
struct ConvertOp
{
Attrib::Enum attr;
uint32_t src;
uint32_t dest;
uint32_t size;
};
ConvertOp convertOp[Attrib::Count];
uint32_t numOps = 0;
const uint8_t* src = (const uint8_t*)_srcData;
uint32_t srcStride = _srcLayout.getStride();
uint8_t* dest = (uint8_t*)_destData;
uint32_t destStride = _destLayout.getStride();
for (uint32_t ii = 0; ii < Attrib::Count; ++ii)
{
Attrib::Enum attr = (Attrib::Enum)ii;
if (_destLayout.has(attr) )
{
ConvertOp& cop = convertOp[numOps];
cop.attr = attr;
cop.dest = _destLayout.getOffset(attr);
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_destLayout.decode(attr, num, type, normalized, asInt);
cop.size = (*s_attribTypeSize[0])[type][num-1];
if (_srcLayout.has(attr) )
{
cop.src = _srcLayout.getOffset(attr);
if (_destLayout.m_attributes[attr] == _srcLayout.m_attributes[attr])
{
bx::memCopy(dest + cop.dest, destStride, src + cop.src, srcStride, cop.size, _num);
}
else
{
++numOps;
}
}
else
{
bx::memSet(dest + cop.dest, destStride, 0, cop.size, _num);
}
}
}
if (0 < numOps)
{
float unpacked[4];
for (uint32_t ii = 0; ii < _num; ++ii)
{
for (uint32_t jj = 0; jj < numOps; ++jj)
{
const ConvertOp& cop = convertOp[jj];
vertexUnpack(unpacked, cop.attr, _srcLayout, src);
vertexPack(unpacked, true, cop.attr, _destLayout, dest);
}
src += srcStride;
dest += destStride;
}
}
}
inline float sqLength(const float _a[3], const float _b[3])
{
const float xx = _a[0] - _b[0];
const float yy = _a[1] - _b[1];
const float zz = _a[2] - _b[2];
return xx*xx + yy*yy + zz*zz;
}
template<typename IndexT>
static IndexT weldVerticesRef(IndexT* _output, const VertexLayout& _layout, const void* _data, uint32_t _num, float _epsilon)
{
// Brute force slow vertex welding...
const float epsilonSq = _epsilon*_epsilon;
uint32_t numVertices = 0;
bx::memSet(_output, 0xff, _num*sizeof(IndexT) );
for (uint32_t ii = 0; ii < _num; ++ii)
{
if (IndexT(-1) != _output[ii])
{
continue;
}
_output[ii] = (IndexT)ii;
++numVertices;
float pos[4];
vertexUnpack(pos, Attrib::Position, _layout, _data, ii);
for (uint32_t jj = 0; jj < _num; ++jj)
{
if (IndexT(-1) != _output[jj])
{
continue;
}
float test[4];
vertexUnpack(test, Attrib::Position, _layout, _data, jj);
if (sqLength(test, pos) < epsilonSq)
{
_output[jj] = IndexT(ii);
}
}
}
return IndexT(numVertices);
}
template<typename IndexT>
static IndexT weldVertices(IndexT* _output, const VertexLayout& _layout, const void* _data, uint32_t _num, float _epsilon, bx::AllocatorI* _allocator)
{
const uint32_t hashSize = bx::uint32_nextpow2(_num);
const uint32_t hashMask = hashSize-1;
const float epsilonSq = _epsilon*_epsilon;
uint32_t numVertices = 0;
const uint32_t size = sizeof(IndexT)*(hashSize + _num);
IndexT* hashTable = (IndexT*)bx::alloc(_allocator, size);
bx::memSet(hashTable, 0xff, size);
IndexT* next = hashTable + hashSize;
for (uint32_t ii = 0; ii < _num; ++ii)
{
float pos[4];
vertexUnpack(pos, Attrib::Position, _layout, _data, ii);
uint32_t hashValue = bx::hash<bx::HashMurmur2A>(pos, 3*sizeof(float) ) & hashMask;
IndexT offset = hashTable[hashValue];
for (; IndexT(-1) != offset; offset = next[offset])
{
float test[4];
vertexUnpack(test, Attrib::Position, _layout, _data, _output[offset]);
if (sqLength(test, pos) < epsilonSq)
{
_output[ii] = _output[offset];
break;
}
}
if (IndexT(-1) == offset)
{
_output[ii] = IndexT(ii);
next[ii] = hashTable[hashValue];
hashTable[hashValue] = IndexT(ii);
numVertices++;
}
}
bx::free(_allocator, hashTable);
return IndexT(numVertices);
}
uint32_t weldVertices(void* _output, const VertexLayout& _layout, const void* _data, uint32_t _num, bool _index32, float _epsilon, bx::AllocatorI* _allocator)
{
if (_index32)
{
return weldVertices( (uint32_t*)_output, _layout, _data, _num, _epsilon, _allocator);
}
return weldVertices( (uint16_t*)_output, _layout, _data, _num, _epsilon, _allocator);
}
} // namespace bgfx