// Copyright (c) 2019 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "source/fuzz/fuzzer_util.h" namespace spvtools { namespace fuzz { namespace fuzzerutil { bool IsFreshId(opt::IRContext* context, uint32_t id) { return !context->get_def_use_mgr()->GetDef(id); } void UpdateModuleIdBound(opt::IRContext* context, uint32_t id) { // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/2541) consider the // case where the maximum id bound is reached. context->module()->SetIdBound( std::max(context->module()->id_bound(), id + 1)); } opt::BasicBlock* MaybeFindBlock(opt::IRContext* context, uint32_t maybe_block_id) { auto inst = context->get_def_use_mgr()->GetDef(maybe_block_id); if (inst == nullptr) { // No instruction defining this id was found. return nullptr; } if (inst->opcode() != SpvOpLabel) { // The instruction defining the id is not a label, so it cannot be a block // id. return nullptr; } return context->cfg()->block(maybe_block_id); } bool PhiIdsOkForNewEdge( opt::IRContext* context, opt::BasicBlock* bb_from, opt::BasicBlock* bb_to, const google::protobuf::RepeatedField& phi_ids) { if (bb_from->IsSuccessor(bb_to)) { // There is already an edge from |from_block| to |to_block|, so there is // no need to extend OpPhi instructions. Do not allow phi ids to be // present. This might turn out to be too strict; perhaps it would be OK // just to ignore the ids in this case. return phi_ids.empty(); } // The edge would add a previously non-existent edge from |from_block| to // |to_block|, so we go through the given phi ids and check that they exactly // match the OpPhi instructions in |to_block|. uint32_t phi_index = 0; // An explicit loop, rather than applying a lambda to each OpPhi in |bb_to|, // makes sense here because we need to increment |phi_index| for each OpPhi // instruction. for (auto& inst : *bb_to) { if (inst.opcode() != SpvOpPhi) { // The OpPhi instructions all occur at the start of the block; if we find // a non-OpPhi then we have seen them all. break; } if (phi_index == static_cast(phi_ids.size())) { // Not enough phi ids have been provided to account for the OpPhi // instructions. return false; } // Look for an instruction defining the next phi id. opt::Instruction* phi_extension = context->get_def_use_mgr()->GetDef(phi_ids[phi_index]); if (!phi_extension) { // The id given to extend this OpPhi does not exist. return false; } if (phi_extension->type_id() != inst.type_id()) { // The instruction given to extend this OpPhi either does not have a type // or its type does not match that of the OpPhi. return false; } if (context->get_instr_block(phi_extension)) { // The instruction defining the phi id has an associated block (i.e., it // is not a global value). Check whether its definition dominates the // exit of |from_block|. auto dominator_analysis = context->GetDominatorAnalysis(bb_from->GetParent()); if (!dominator_analysis->Dominates(phi_extension, bb_from->terminator())) { // The given id is no good as its definition does not dominate the exit // of |from_block| return false; } } phi_index++; } // Return false if not all of the ids for extending OpPhi instructions are // needed. This might turn out to be stricter than necessary; perhaps it would // be OK just to not use the ids in this case. return phi_index == static_cast(phi_ids.size()); } void AddUnreachableEdgeAndUpdateOpPhis( opt::IRContext* context, opt::BasicBlock* bb_from, opt::BasicBlock* bb_to, bool condition_value, const google::protobuf::RepeatedField& phi_ids) { assert(PhiIdsOkForNewEdge(context, bb_from, bb_to, phi_ids) && "Precondition on phi_ids is not satisfied"); assert(bb_from->terminator()->opcode() == SpvOpBranch && "Precondition on terminator of bb_from is not satisfied"); // Get the id of the boolean constant to be used as the condition. opt::analysis::Bool bool_type; opt::analysis::BoolConstant bool_constant( context->get_type_mgr()->GetRegisteredType(&bool_type)->AsBool(), condition_value); uint32_t bool_id = context->get_constant_mgr()->FindDeclaredConstant( &bool_constant, context->get_type_mgr()->GetId(&bool_type)); const bool from_to_edge_already_exists = bb_from->IsSuccessor(bb_to); auto successor = bb_from->terminator()->GetSingleWordInOperand(0); // Add the dead branch, by turning OpBranch into OpBranchConditional, and // ordering the targets depending on whether the given boolean corresponds to // true or false. bb_from->terminator()->SetOpcode(SpvOpBranchConditional); bb_from->terminator()->SetInOperands( {{SPV_OPERAND_TYPE_ID, {bool_id}}, {SPV_OPERAND_TYPE_ID, {condition_value ? successor : bb_to->id()}}, {SPV_OPERAND_TYPE_ID, {condition_value ? bb_to->id() : successor}}}); // Update OpPhi instructions in the target block if this branch adds a // previously non-existent edge from source to target. if (!from_to_edge_already_exists) { uint32_t phi_index = 0; for (auto& inst : *bb_to) { if (inst.opcode() != SpvOpPhi) { break; } assert(phi_index < static_cast(phi_ids.size()) && "There should be exactly one phi id per OpPhi instruction."); inst.AddOperand({SPV_OPERAND_TYPE_ID, {phi_ids[phi_index]}}); inst.AddOperand({SPV_OPERAND_TYPE_ID, {bb_from->id()}}); phi_index++; } assert(phi_index == static_cast(phi_ids.size()) && "There should be exactly one phi id per OpPhi instruction."); } } bool BlockIsInLoopContinueConstruct(opt::IRContext* context, uint32_t block_id, uint32_t maybe_loop_header_id) { // We deem a block to be part of a loop's continue construct if the loop's // continue target dominates the block. auto containing_construct_block = context->cfg()->block(maybe_loop_header_id); if (containing_construct_block->IsLoopHeader()) { auto continue_target = containing_construct_block->ContinueBlockId(); if (context->GetDominatorAnalysis(containing_construct_block->GetParent()) ->Dominates(continue_target, block_id)) { return true; } } return false; } opt::BasicBlock::iterator GetIteratorForBaseInstructionAndOffset( opt::BasicBlock* block, const opt::Instruction* base_inst, uint32_t offset) { // The cases where |base_inst| is the block's label, vs. inside the block, // are dealt with separately. if (base_inst == block->GetLabelInst()) { // |base_inst| is the block's label. if (offset == 0) { // We cannot return an iterator to the block's label. return block->end(); } // Conceptually, the first instruction in the block is [label + 1]. // We thus start from 1 when applying the offset. auto inst_it = block->begin(); for (uint32_t i = 1; i < offset && inst_it != block->end(); i++) { ++inst_it; } // This is either the desired instruction, or the end of the block. return inst_it; } // |base_inst| is inside the block. for (auto inst_it = block->begin(); inst_it != block->end(); ++inst_it) { if (base_inst == &*inst_it) { // We have found the base instruction; we now apply the offset. for (uint32_t i = 0; i < offset && inst_it != block->end(); i++) { ++inst_it; } // This is either the desired instruction, or the end of the block. return inst_it; } } assert(false && "The base instruction was not found."); return nullptr; } std::vector GetSuccessors(opt::BasicBlock* block) { std::vector result; switch (block->terminator()->opcode()) { case SpvOpBranch: result.push_back(block->terminator()->GetSingleWordInOperand(0)); break; case SpvOpBranchConditional: result.push_back(block->terminator()->GetSingleWordInOperand(1)); result.push_back(block->terminator()->GetSingleWordInOperand(2)); break; case SpvOpSwitch: for (uint32_t i = 1; i < block->terminator()->NumInOperands(); i += 2) { result.push_back(block->terminator()->GetSingleWordInOperand(i)); } break; default: break; } return result; } void FindBypassedBlocks(opt::IRContext* context, opt::BasicBlock* bb_from, opt::BasicBlock* bb_to, std::set* bypassed_blocks) { // This algorithm finds all blocks different from |bb_from| that: // - are in the innermost structured control flow construct containing // |bb_from| // - can be reached from |bb_from| without traversing a back-edge or going // through |bb_to| // // This is achieved by doing a depth-first search of the function's CFG, // exploring merge blocks before successors, and grabbing all blocks that are // visited in the sub-search rooted at |bb_from|. (As an optimization, the // search terminates as soon as exploration of |bb_from| has completed.) // This represents a basic block in a partial state of exploration. As we // wish to visit merge blocks in advance of regular successors, we track them // separately. struct StackNode { opt::BasicBlock* block; bool handled_merge; std::vector successors; uint32_t next_successor; }; auto enclosing_function = bb_from->GetParent(); // The set of block ids already visited during search. We put |bb_to| in // there initially so that search automatically backtracks when this block is // reached. std::set visited; visited.insert(bb_to->id()); // Tracks when we are in the region of blocks that are to be grabbed; we flip // this to 'true' once we reach |bb_from| and have finished searching its // merge block (in the case that it happens to be a header. bool interested = false; std::vector dfs_stack; opt::BasicBlock* entry_block = enclosing_function->entry().get(); dfs_stack.push_back({entry_block, false, GetSuccessors(entry_block), 0}); while (!dfs_stack.empty()) { StackNode* node = &dfs_stack.back(); // First make sure we search the merge block associated ith this block, if // there is one. if (!node->handled_merge) { node->handled_merge = true; if (node->block->MergeBlockIdIfAny()) { opt::BasicBlock* merge_block = context->cfg()->block(node->block->MergeBlockIdIfAny()); // A block can only be the merge block for one header, so this block // should only be in |visited| if it is |bb_to|, which we put into // |visited| in advance. assert(visited.count(merge_block->id()) == 0 || merge_block == bb_to); if (visited.count(merge_block->id()) == 0) { visited.insert(merge_block->id()); dfs_stack.push_back( {merge_block, false, GetSuccessors(merge_block), 0}); } } continue; } // If we find |bb_from|, we are interested in grabbing previously unseen // successor blocks (by this point we will have already searched the merge // block associated with |bb_from|, if there is one. if (node->block == bb_from) { interested = true; } // Consider the next unexplored successor. if (node->next_successor < node->successors.size()) { uint32_t successor_id = node->successors[node->next_successor]; if (visited.count(successor_id) == 0) { visited.insert(successor_id); opt::BasicBlock* successor_block = context->cfg()->block(successor_id); if (interested) { // If we're in the region of interest, grab this block. bypassed_blocks->insert(successor_block); } dfs_stack.push_back( {successor_block, false, GetSuccessors(successor_block), 0}); } node->next_successor++; } else { // We have finished exploring |node|. If it is |bb_from|, we can // terminate search -- we have grabbed all the relevant blocks. if (node->block == bb_from) { break; } dfs_stack.pop_back(); } } } bool NewEdgeLeavingConstructBodyRespectsUseDefDominance( opt::IRContext* context, opt::BasicBlock* bb_from, opt::BasicBlock* bb_to) { // Find those blocks that the edge from |bb_from| to |bb_to| might bypass. std::set bypassed_blocks; FindBypassedBlocks(context, bb_from, bb_to, &bypassed_blocks); // For each bypassed block, check whether it contains a definition that is // used by some non-bypassed block - that would be problematic. for (auto defining_block : bypassed_blocks) { for (auto& inst : *defining_block) { if (!context->get_def_use_mgr()->WhileEachUse( &inst, [context, &bypassed_blocks](opt::Instruction* user, uint32_t operand_index) -> bool { // If this use is in an OpPhi, we need to check that dominance // of the relevant *parent* block is not spoiled. Otherwise we // need to check that dominance of the block containing the use // is not spoiled. opt::BasicBlock* use_block_or_phi_parent = user->opcode() == SpvOpPhi ? context->cfg()->block( user->GetSingleWordOperand(operand_index + 1)) : context->get_instr_block(user); // There might not be any relevant block, e.g. if the use is in // a decoration; in this case the new edge is unproblematic. if (use_block_or_phi_parent == nullptr) { return true; } // If the use-block is not in |bypassed_blocks| then we have // found a block in the construct that is reachable from // |from_block|, and which defines an id that is used outside of // the construct. Adding an edge from |from_block| to // |to_block| would prevent this use being dominated. return bypassed_blocks.find(use_block_or_phi_parent) != bypassed_blocks.end(); })) { return false; } } } return true; } } // namespace fuzzerutil } // namespace fuzz } // namespace spvtools