// Copyright (c) 2019 The Khronos Group Inc. // Copyright (c) 2019 Valve Corporation // Copyright (c) 2019 LunarG Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "convert_to_half_pass.h" #include "source/opt/ir_builder.h" namespace { // Indices of operands in SPIR-V instructions static const int kImageSampleDrefIdInIdx = 2; } // anonymous namespace namespace spvtools { namespace opt { bool ConvertToHalfPass::IsArithmetic(Instruction* inst) { return target_ops_core_.count(inst->opcode()) != 0 || (inst->opcode() == SpvOpExtInst && inst->GetSingleWordInOperand(0) == context()->get_feature_mgr()->GetExtInstImportId_GLSLstd450() && target_ops_450_.count(inst->GetSingleWordInOperand(1)) != 0); } bool ConvertToHalfPass::IsFloat(Instruction* inst, uint32_t width) { uint32_t ty_id = inst->type_id(); if (ty_id == 0) return false; return Pass::IsFloat(ty_id, width); } bool ConvertToHalfPass::IsRelaxed(Instruction* inst) { uint32_t r_id = inst->result_id(); for (auto r_inst : get_decoration_mgr()->GetDecorationsFor(r_id, false)) if (r_inst->opcode() == SpvOpDecorate && r_inst->GetSingleWordInOperand(1) == SpvDecorationRelaxedPrecision) return true; return false; } analysis::Type* ConvertToHalfPass::FloatScalarType(uint32_t width) { analysis::Float float_ty(width); return context()->get_type_mgr()->GetRegisteredType(&float_ty); } analysis::Type* ConvertToHalfPass::FloatVectorType(uint32_t v_len, uint32_t width) { analysis::Type* reg_float_ty = FloatScalarType(width); analysis::Vector vec_ty(reg_float_ty, v_len); return context()->get_type_mgr()->GetRegisteredType(&vec_ty); } analysis::Type* ConvertToHalfPass::FloatMatrixType(uint32_t v_cnt, uint32_t vty_id, uint32_t width) { Instruction* vty_inst = get_def_use_mgr()->GetDef(vty_id); uint32_t v_len = vty_inst->GetSingleWordInOperand(1); analysis::Type* reg_vec_ty = FloatVectorType(v_len, width); analysis::Matrix mat_ty(reg_vec_ty, v_cnt); return context()->get_type_mgr()->GetRegisteredType(&mat_ty); } uint32_t ConvertToHalfPass::EquivFloatTypeId(uint32_t ty_id, uint32_t width) { analysis::Type* reg_equiv_ty; Instruction* ty_inst = get_def_use_mgr()->GetDef(ty_id); if (ty_inst->opcode() == SpvOpTypeMatrix) reg_equiv_ty = FloatMatrixType(ty_inst->GetSingleWordInOperand(1), ty_inst->GetSingleWordInOperand(0), width); else if (ty_inst->opcode() == SpvOpTypeVector) reg_equiv_ty = FloatVectorType(ty_inst->GetSingleWordInOperand(1), width); else // SpvOpTypeFloat reg_equiv_ty = FloatScalarType(width); return context()->get_type_mgr()->GetTypeInstruction(reg_equiv_ty); } void ConvertToHalfPass::GenConvert(uint32_t* val_idp, uint32_t width, InstructionBuilder* builder) { Instruction* val_inst = get_def_use_mgr()->GetDef(*val_idp); uint32_t ty_id = val_inst->type_id(); uint32_t nty_id = EquivFloatTypeId(ty_id, width); if (nty_id == ty_id) return; Instruction* cvt_inst; if (val_inst->opcode() == SpvOpUndef) cvt_inst = builder->AddNullaryOp(nty_id, SpvOpUndef); else cvt_inst = builder->AddUnaryOp(nty_id, SpvOpFConvert, *val_idp); *val_idp = cvt_inst->result_id(); } bool ConvertToHalfPass::MatConvertCleanup(Instruction* inst) { if (inst->opcode() != SpvOpFConvert) return false; uint32_t mty_id = inst->type_id(); Instruction* mty_inst = get_def_use_mgr()->GetDef(mty_id); if (mty_inst->opcode() != SpvOpTypeMatrix) return false; uint32_t vty_id = mty_inst->GetSingleWordInOperand(0); uint32_t v_cnt = mty_inst->GetSingleWordInOperand(1); Instruction* vty_inst = get_def_use_mgr()->GetDef(vty_id); uint32_t cty_id = vty_inst->GetSingleWordInOperand(0); Instruction* cty_inst = get_def_use_mgr()->GetDef(cty_id); InstructionBuilder builder( context(), inst, IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); // Convert each component vector, combine them with OpCompositeConstruct // and replace original instruction. uint32_t orig_width = (cty_inst->GetSingleWordInOperand(0) == 16) ? 32 : 16; uint32_t orig_mat_id = inst->GetSingleWordInOperand(0); uint32_t orig_vty_id = EquivFloatTypeId(vty_id, orig_width); std::vector opnds = {}; for (uint32_t vidx = 0; vidx < v_cnt; ++vidx) { Instruction* ext_inst = builder.AddIdLiteralOp( orig_vty_id, SpvOpCompositeExtract, orig_mat_id, vidx); Instruction* cvt_inst = builder.AddUnaryOp(vty_id, SpvOpFConvert, ext_inst->result_id()); opnds.push_back({SPV_OPERAND_TYPE_ID, {cvt_inst->result_id()}}); } uint32_t mat_id = TakeNextId(); std::unique_ptr mat_inst(new Instruction( context(), SpvOpCompositeConstruct, mty_id, mat_id, opnds)); (void)builder.AddInstruction(std::move(mat_inst)); context()->ReplaceAllUsesWith(inst->result_id(), mat_id); // Turn original instruction into copy so it is valid. inst->SetOpcode(SpvOpCopyObject); inst->SetResultType(EquivFloatTypeId(mty_id, orig_width)); get_def_use_mgr()->AnalyzeInstUse(inst); return true; } void ConvertToHalfPass::RemoveRelaxedDecoration(uint32_t id) { context()->get_decoration_mgr()->RemoveDecorationsFrom( id, [](const Instruction& dec) { if (dec.opcode() == SpvOpDecorate && dec.GetSingleWordInOperand(1u) == SpvDecorationRelaxedPrecision) return true; else return false; }); } bool ConvertToHalfPass::GenHalfArith(Instruction* inst) { bool modified = false; // Convert all float32 based operands to float16 equivalent and change // instruction type to float16 equivalent. InstructionBuilder builder( context(), inst, IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); inst->ForEachInId([&builder, &modified, this](uint32_t* idp) { Instruction* op_inst = get_def_use_mgr()->GetDef(*idp); if (!IsFloat(op_inst, 32)) return; GenConvert(idp, 16, &builder); modified = true; }); if (IsFloat(inst, 32)) { inst->SetResultType(EquivFloatTypeId(inst->type_id(), 16)); modified = true; } if (modified) get_def_use_mgr()->AnalyzeInstUse(inst); return modified; } bool ConvertToHalfPass::ProcessPhi(Instruction* inst) { // Skip if not float32 if (!IsFloat(inst, 32)) return false; // Skip if no relaxed operands. bool relaxed_found = false; uint32_t ocnt = 0; inst->ForEachInId([&ocnt, &relaxed_found, this](uint32_t* idp) { if (ocnt % 2 == 0) { Instruction* val_inst = get_def_use_mgr()->GetDef(*idp); if (IsRelaxed(val_inst)) relaxed_found = true; } ++ocnt; }); if (!relaxed_found) return false; // Add float16 converts of any float32 operands and change type // of phi to float16 equivalent. Operand converts need to be added to // preceeding blocks. ocnt = 0; uint32_t* prev_idp; inst->ForEachInId([&ocnt, &prev_idp, this](uint32_t* idp) { if (ocnt % 2 == 0) { prev_idp = idp; } else { Instruction* val_inst = get_def_use_mgr()->GetDef(*prev_idp); if (IsFloat(val_inst, 32)) { BasicBlock* bp = context()->get_instr_block(*idp); auto insert_before = bp->tail(); if (insert_before != bp->begin()) { --insert_before; if (insert_before->opcode() != SpvOpSelectionMerge && insert_before->opcode() != SpvOpLoopMerge) ++insert_before; } InstructionBuilder builder(context(), &*insert_before, IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); GenConvert(prev_idp, 16, &builder); } } ++ocnt; }); inst->SetResultType(EquivFloatTypeId(inst->type_id(), 16)); get_def_use_mgr()->AnalyzeInstUse(inst); return true; } bool ConvertToHalfPass::ProcessExtract(Instruction* inst) { bool modified = false; uint32_t comp_id = inst->GetSingleWordInOperand(0); Instruction* comp_inst = get_def_use_mgr()->GetDef(comp_id); // If extract is relaxed float32 based type and the composite is a relaxed // float32 based type, convert it to float16 equivalent. This is slightly // aggressive and pushes any likely conversion to apply to the whole // composite rather than apply to each extracted component later. This // can be a win if the platform can convert the entire composite in the same // time as one component. It risks converting components that may not be // used, although empirical data on a large set of real-world shaders seems // to suggest this is not common and the composite convert is the best choice. if (IsFloat(inst, 32) && IsRelaxed(inst) && IsFloat(comp_inst, 32) && IsRelaxed(comp_inst)) { InstructionBuilder builder( context(), inst, IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); GenConvert(&comp_id, 16, &builder); inst->SetInOperand(0, {comp_id}); comp_inst = get_def_use_mgr()->GetDef(comp_id); modified = true; } // If the composite is a float16 based type, make sure the type of the // extract agrees. if (IsFloat(comp_inst, 16) && !IsFloat(inst, 16)) { inst->SetResultType(EquivFloatTypeId(inst->type_id(), 16)); modified = true; } if (modified) get_def_use_mgr()->AnalyzeInstUse(inst); return modified; } bool ConvertToHalfPass::ProcessConvert(Instruction* inst) { // If float32 and relaxed, change to float16 convert if (IsFloat(inst, 32) && IsRelaxed(inst)) { inst->SetResultType(EquivFloatTypeId(inst->type_id(), 16)); get_def_use_mgr()->AnalyzeInstUse(inst); } // If operand and result types are the same, replace result with operand // and change convert to copy to keep validator happy; DCE will clean it up uint32_t val_id = inst->GetSingleWordInOperand(0); Instruction* val_inst = get_def_use_mgr()->GetDef(val_id); if (inst->type_id() == val_inst->type_id()) { context()->ReplaceAllUsesWith(inst->result_id(), val_id); inst->SetOpcode(SpvOpCopyObject); } return true; // modified } bool ConvertToHalfPass::ProcessImageRef(Instruction* inst) { bool modified = false; // If image reference, only need to convert dref args back to float32 if (dref_image_ops_.count(inst->opcode()) != 0) { uint32_t dref_id = inst->GetSingleWordInOperand(kImageSampleDrefIdInIdx); Instruction* dref_inst = get_def_use_mgr()->GetDef(dref_id); if (IsFloat(dref_inst, 16) && IsRelaxed(dref_inst)) { InstructionBuilder builder( context(), inst, IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); GenConvert(&dref_id, 32, &builder); inst->SetInOperand(kImageSampleDrefIdInIdx, {dref_id}); get_def_use_mgr()->AnalyzeInstUse(inst); modified = true; } } return modified; } bool ConvertToHalfPass::ProcessDefault(Instruction* inst) { bool modified = false; // If non-relaxed instruction has changed operands, need to convert // them back to float32 InstructionBuilder builder( context(), inst, IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); inst->ForEachInId([&builder, &modified, this](uint32_t* idp) { Instruction* op_inst = get_def_use_mgr()->GetDef(*idp); if (!IsFloat(op_inst, 16)) return; if (!IsRelaxed(op_inst)) return; uint32_t old_id = *idp; GenConvert(idp, 32, &builder); if (*idp != old_id) modified = true; }); if (modified) get_def_use_mgr()->AnalyzeInstUse(inst); return modified; } bool ConvertToHalfPass::GenHalfCode(Instruction* inst) { bool modified = false; // Remember id for later deletion of RelaxedPrecision decoration bool inst_relaxed = IsRelaxed(inst); if (inst_relaxed) relaxed_ids_.push_back(inst->result_id()); if (IsArithmetic(inst) && inst_relaxed) modified = GenHalfArith(inst); else if (inst->opcode() == SpvOpPhi) modified = ProcessPhi(inst); else if (inst->opcode() == SpvOpCompositeExtract) modified = ProcessExtract(inst); else if (inst->opcode() == SpvOpFConvert) modified = ProcessConvert(inst); else if (image_ops_.count(inst->opcode()) != 0) modified = ProcessImageRef(inst); else modified = ProcessDefault(inst); return modified; } bool ConvertToHalfPass::ProcessFunction(Function* func) { bool modified = false; cfg()->ForEachBlockInReversePostOrder( func->entry().get(), [&modified, this](BasicBlock* bb) { for (auto ii = bb->begin(); ii != bb->end(); ++ii) modified |= GenHalfCode(&*ii); }); cfg()->ForEachBlockInReversePostOrder( func->entry().get(), [&modified, this](BasicBlock* bb) { for (auto ii = bb->begin(); ii != bb->end(); ++ii) modified |= MatConvertCleanup(&*ii); }); return modified; } Pass::Status ConvertToHalfPass::ProcessImpl() { Pass::ProcessFunction pfn = [this](Function* fp) { return ProcessFunction(fp); }; bool modified = context()->ProcessEntryPointCallTree(pfn); // If modified, make sure module has Float16 capability if (modified) context()->AddCapability(SpvCapabilityFloat16); // Remove all RelaxedPrecision decorations from instructions and globals for (auto c_id : relaxed_ids_) RemoveRelaxedDecoration(c_id); for (auto& val : get_module()->types_values()) { uint32_t v_id = val.result_id(); if (v_id != 0) RemoveRelaxedDecoration(v_id); } return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange; } Pass::Status ConvertToHalfPass::Process() { Initialize(); return ProcessImpl(); } void ConvertToHalfPass::Initialize() { target_ops_core_ = { SpvOpVectorExtractDynamic, SpvOpVectorInsertDynamic, SpvOpVectorShuffle, SpvOpCompositeConstruct, SpvOpCompositeInsert, SpvOpCopyObject, SpvOpTranspose, SpvOpConvertSToF, SpvOpConvertUToF, // SpvOpFConvert, // SpvOpQuantizeToF16, SpvOpFNegate, SpvOpFAdd, SpvOpFSub, SpvOpFMul, SpvOpFDiv, SpvOpFMod, SpvOpVectorTimesScalar, SpvOpMatrixTimesScalar, SpvOpVectorTimesMatrix, SpvOpMatrixTimesVector, SpvOpMatrixTimesMatrix, SpvOpOuterProduct, SpvOpDot, SpvOpSelect, SpvOpFOrdEqual, SpvOpFUnordEqual, SpvOpFOrdNotEqual, SpvOpFUnordNotEqual, SpvOpFOrdLessThan, SpvOpFUnordLessThan, SpvOpFOrdGreaterThan, SpvOpFUnordGreaterThan, SpvOpFOrdLessThanEqual, SpvOpFUnordLessThanEqual, SpvOpFOrdGreaterThanEqual, SpvOpFUnordGreaterThanEqual, }; target_ops_450_ = { GLSLstd450Round, GLSLstd450RoundEven, GLSLstd450Trunc, GLSLstd450FAbs, GLSLstd450FSign, GLSLstd450Floor, GLSLstd450Ceil, GLSLstd450Fract, GLSLstd450Radians, GLSLstd450Degrees, GLSLstd450Sin, GLSLstd450Cos, GLSLstd450Tan, GLSLstd450Asin, GLSLstd450Acos, GLSLstd450Atan, GLSLstd450Sinh, GLSLstd450Cosh, GLSLstd450Tanh, GLSLstd450Asinh, GLSLstd450Acosh, GLSLstd450Atanh, GLSLstd450Atan2, GLSLstd450Pow, GLSLstd450Exp, GLSLstd450Log, GLSLstd450Exp2, GLSLstd450Log2, GLSLstd450Sqrt, GLSLstd450InverseSqrt, GLSLstd450Determinant, GLSLstd450MatrixInverse, // TODO(greg-lunarg): GLSLstd450ModfStruct, GLSLstd450FMin, GLSLstd450FMax, GLSLstd450FClamp, GLSLstd450FMix, GLSLstd450Step, GLSLstd450SmoothStep, GLSLstd450Fma, // TODO(greg-lunarg): GLSLstd450FrexpStruct, GLSLstd450Ldexp, GLSLstd450Length, GLSLstd450Distance, GLSLstd450Cross, GLSLstd450Normalize, GLSLstd450FaceForward, GLSLstd450Reflect, GLSLstd450Refract, GLSLstd450NMin, GLSLstd450NMax, GLSLstd450NClamp}; image_ops_ = {SpvOpImageSampleImplicitLod, SpvOpImageSampleExplicitLod, SpvOpImageSampleDrefImplicitLod, SpvOpImageSampleDrefExplicitLod, SpvOpImageSampleProjImplicitLod, SpvOpImageSampleProjExplicitLod, SpvOpImageSampleProjDrefImplicitLod, SpvOpImageSampleProjDrefExplicitLod, SpvOpImageFetch, SpvOpImageGather, SpvOpImageDrefGather, SpvOpImageRead, SpvOpImageSparseSampleImplicitLod, SpvOpImageSparseSampleExplicitLod, SpvOpImageSparseSampleDrefImplicitLod, SpvOpImageSparseSampleDrefExplicitLod, SpvOpImageSparseSampleProjImplicitLod, SpvOpImageSparseSampleProjExplicitLod, SpvOpImageSparseSampleProjDrefImplicitLod, SpvOpImageSparseSampleProjDrefExplicitLod, SpvOpImageSparseFetch, SpvOpImageSparseGather, SpvOpImageSparseDrefGather, SpvOpImageSparseTexelsResident, SpvOpImageSparseRead}; dref_image_ops_ = { SpvOpImageSampleDrefImplicitLod, SpvOpImageSampleDrefExplicitLod, SpvOpImageSampleProjDrefImplicitLod, SpvOpImageSampleProjDrefExplicitLod, SpvOpImageDrefGather, SpvOpImageSparseSampleDrefImplicitLod, SpvOpImageSparseSampleDrefExplicitLod, SpvOpImageSparseSampleProjDrefImplicitLod, SpvOpImageSparseSampleProjDrefExplicitLod, SpvOpImageSparseDrefGather, }; relaxed_ids_.clear(); } } // namespace opt } // namespace spvtools